ABSTRACTION AND COUNTEREXAMPLE-GUIDED REFINEMENT IN MODEL CHECKING OF HYBRID SYSTEMS

EDMUND CLARKE, ANSGAR FEHNKER, ZHI HAN, BRUCE KROGH, JOEL OUAKNINE, OLAF STURSBERG, MICHAEL THEOBALD

1 Computer Science Department, Carnegie Mellon University, Pittsburgh, PA 15213, USA
2 Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
3 Process Control Lab (CT-AST), University of Dortmund, 44221 Dortmund, Germany

Received (received date)
Revised (revised date)
Communicated by Editor’s name

ABSTRACT

Hybrid dynamic systems include both continuous and discrete state variables. Properties of hybrid systems, which have an infinite state space, can often be verified using ordinary model checking together with a finite-state abstraction. Model checking can be inconclusive, however, in which case the abstraction must be refined. This paper presents a new procedure to perform this refinement operation for abstractions of hybrid systems. Following an approach originally developed for finite-state systems [11, 25], the refinement procedure constructs a new abstraction that eliminates a counterexample generated by the model checker. For hybrid systems, analysis of the counterexample requires the computation of sets of reachable states in the continuous state space. We show how such reachability computations with varying degrees of complexity can be used to refine hybrid system abstractions efficiently. Examples illustrate our counterexample-guided refinement procedure. Experimental results for a prototype implementation indicate significant advantages over existing methods.

Keywords: Abstraction, Model Checking, Infinite-State Systems, Hybrid Systems, Refinement, Verification.

1. Introduction

Hybrid systems are formal models that include both continuous and discrete state variables. With the increasing use of hybrid systems to design embedded controllers for complex systems such as manufacturing processes, automobiles, and transportation networks, there is an urgent need for more powerful analysis tools, especially for safety critical applications. Tools developed so far for the automated analysis of hybrid systems are restricted to low-dimensional continuous dynamics [29]. The reason for this limitation is the

*This research was supported by the Defense Advanced Research Project Agency (DARPA) MoBIES project under contracts no. F3361500C1701 and F33615-02-C-0429, by the Army Research Office (ARO) under contract no. DAAD19-01-1-0485, by the National Science Foundation (NSF) under grants no. CCR-0121547 and CCR-0098072, by the Office of Naval Research (ONR) under contract no. N00014-95-1-0520. The views and conclusions in this document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of DARPA, ARO, ONR, NSF, the U.S. Government or any other entity.

A preliminary version of this work has appeared in [10].
difficulty of representing and computing sets of reachable states for continuous dynamic systems. Recent publications have proposed two general approaches to deal with the complexity of hybrid system analysis, namely modular analysis (e.g., [21, 15]) and abstraction (e.g., [3, 1, 30]). This paper focuses on the latter approach.

Abstraction maps a given model into a less complex model that retains the behaviors of interest [3]. In the context of hybrid system verification, abstraction transforms the inherently infinite state system into a finite-state model [1, 30]. Existing tools often do not take into account the specification itself when building an abstract model. Rather, an abstract representation is constructed for the entire hybrid system using a degree of detail which seems to be appropriate. If the abstraction is not suitable to analyze the property, then the abstract model is globally refined [7].

As an alternative, we suggest a procedure that (a) starts from a coarse abstract model and a safety property, (b) identifies parts of the hybrid system which potentially violate the property, and (c) iteratively refines the abstract model until verification reveals whether or not the property in question is satisfied. A framework that follows this general scheme of abstraction, refinement, and analysis, is counterexample-guided abstraction refinement (CEGAR) [11, 13, 25]: For a given system the initial abstraction leads to a conservative model that is guaranteed to include all behaviors of the original system. Model checking [12, 8, 9] is then applied to the abstract model. If the property is violated, the model checker produces a counterexample as an execution path of the abstract model for which the property is not true. If this counterexample corresponds to a genuine behavior of the original system, then the property does not hold for the original system. Otherwise, the information provided by the counterexample is then used to refine the abstract model, i.e., some detail is added to the abstract model in order to obtain a more accurate, yet conservative, representation of the original model. In particular, the refined model is constructed so as to exclude the spurious counterexample. The procedure of alternating between model checking and refinement is continued until the property is confirmed or refuted.

This procedure has recently been applied successfully to finite-state systems in a variety of areas, and in particular in the verification of digital circuits [11, 13]. Earlier work based on the use of counterexamples includes the localization reduction in the context of concurrent systems [25], and recent work has seen the application of the technique to the verification of C programs [5, 19]. Another related abstraction refinement approach for programs [24] is not based on counterexamples but uses backward and forward reachability to decide how to refine an abstract model.

This paper extends counterexample-guided model refinement to hybrid systems, which include both continuous and discrete state variables and thus have an infinite state space. We provide effective means of coping with the difficulties of computing reachable sets for hybrid systems. In particular, we employ reachable set computations with varying degrees of accuracy to refine hybrid system abstractions efficiently. This flexibility cannot easily be achieved with other verification tools for hybrid systems. The approach most closely related to ours, pursued independently by Alur et al. [2], also makes use of spurious counterexamples to refine the state space of a hybrid system. This refinement differs from ours in that it is global rather than location-specific. Moreover, Alur et al. currently restrict themselves to so-called linear hybrid systems, and use different sets of heuristics in their refinement step.

The paper is structured as follows. Section 2 presents preliminaries on abstraction and counterexample-guided refinement. In Section 3 we describe the CEGAR verification approach that refines abstract models based on counterexamples. We introduce hybrid sys-
tems in Section 4, and apply CEGAR to hybrid systems in Section 5. Section 6 summarizes the contributions of this paper.

2. Preliminaries

We introduce the notions of abstraction and counterexample-guided refinement for general transition systems, defined as follows:

Definition 1 Transition System. A transition system is a triple \(TS = (S, S_0, E) \) with a (possibly infinite) state set \(S \), an initial set \(S_0 \subseteq S \), and a set of transitions \(E \subseteq S \times S \).

A path of a transition system is a finite sequence \((s_0, s_1, \ldots, s_m) \) with \(s_0 \in S_0 \), each \(s_i \in S \), and each pair of successive states \((s_i, s_{i+1}) \in E \).

Given two transition systems \(A \) and \(C \), \(A \) is said to be an abstract model of \(C \) if the following relation can be established.

Definition 2 Abstraction. A transition system \(A = (\hat{S}, \hat{S}_0, \hat{E}) \) with a finite set of states \(\hat{S} \) is an abstract model of a transition system \(C = (S, S_0, E) \), denoted \(A \preceq C \), if there exists an abstraction function \(\alpha : S \rightarrow \hat{S} \) such that:

- the initial set is \(\hat{S}_0 = \alpha(S_0) = \{ \hat{s}_0 | \exists s_0 \in S_0 : \hat{s}_0 = \alpha(s_0) \} \), and
- \(\hat{E} \supseteq \alpha(E) = \{ (\hat{s}_1, \hat{s}_2) | \exists s_1, s_2 \in S : (s_1, s_2) \in E, \hat{s}_1 = \alpha(s_1), \hat{s}_2 = \alpha(s_2) \} \).

Note: In general, it is possible—and sometimes desirable—to consider an abstraction relation \(\alpha \) rather than a mere abstraction function. The work presented here can easily be adapted to this more general case, however for simplicity we shall stick to the above definition.

Sometimes the term *simulation* is used in the literature to describe the abstraction relation. In contrast to the definitions of abstraction in [11, 13], Defn. 2 allows \(A \) to include spurious transitions, i.e., the set \(\hat{E} \) may contain elements that do not correspond to transitions in \(C \). Spurious transitions arise in the construction of abstractions of hybrid systems because in most cases sets of reachable states for continuous systems cannot be represented and computed exactly [7].

Abstract models will be used to analyze properties of a given transition system. Throughout the paper, we will call the given system \(C \) the concrete system.

In order to construct a more detailed model from a given abstract model, we define the following concept of model refinement.

Definition 3 Refinement of Abstract Models. Given a concrete system \(C = (S, S_0, E) \) and an abstract model \(A = (\hat{S}, \hat{S}_0, \hat{E}) \) such that \(C \preceq A \), with abstraction function \(\alpha : S \rightarrow \hat{S} \), a model \(A' = (\hat{S}', \hat{S}'_0, \hat{E}') \) is called a refined abstract model of \(C \) with respect to \(A \) if there are two abstraction functions \(\alpha' : S \rightarrow \hat{S}' \) and \(\alpha'' : \hat{S}' \rightarrow \hat{S} \), i.e., if \(C \preceq A' \preceq A \).

Properties (or specifications) are verified for the concrete model \(C \) using an abstract model \(A \). In this paper we consider the verification of safety properties, defined as follows.

Definition 4 Safety. Given a transition system \(TS = (S, S_0, E) \), let the set \(B \subseteq S \setminus S_0 \) specify a set of bad states. We say that \(TS \) is safe with respect to \(B \), denoted by \(TS \models AG\neg B \), if there is no path in the transition system from an initial state in \(S_0 \) to a bad state in \(B \). Otherwise we say \(TS \) is unsafe, denoted by \(TS \not\models AG\neg B \).
Definition 5 Counterexamples. A path $\sigma = (s_0, s_1, \ldots, s_m)$ of $TS = (S, S_0, E)$ with $s_m \in B$ is called a countereexample of TS with respect to the safety property $TS \models AG\neg B$. Given a concrete transition system C, an abstract transition system A, and a countereexample σ in C, we say that $\hat{\sigma} = (\hat{s}_0, \hat{s}_1, \ldots, \hat{s}_m)$ is the corresponding abstract countereexample of the abstract system A, if $\hat{s}_i = \alpha(s_i)$ holds for all $i \in \{0, \ldots, m\}$. Given a countereexample $\hat{\sigma}$ of A, σ is called a corresponding concrete countereexample if for all i, $\hat{s}_i = \alpha(s_i)$ and $(\hat{s}_i, \hat{s}_{i+1}) \in E$. If a countereexample $\hat{\sigma}$ of A has no corresponding concrete countereexample for C, $\hat{\sigma}$ is called a spurious countereexample.

Lemma 1 Given a concrete model $C = (S, S_0, E)$, and an abstract model $A = (\hat{S}, \hat{S}_0, \hat{E})$ of C with an abstraction function α, let $B \subseteq S \setminus S_0$, and choose $\hat{B} \subseteq \hat{S}$ such that $\hat{B} \supseteq \alpha(B) = \{\hat{b} \mid \exists b \in B : \hat{b} = \alpha(b)\}$. If $A \models AG\neg B$, then $C \models AG\neg B$.

If $A \models AG\neg B$ can be verified, it can immediately be concluded from Lemma 1 (i.e., without applying verification to the concrete system C) that $C \models AG\neg B$. On the other hand, the converse of Lemma 1 with respect to the AG-property does not hold. If the verification of A reveals $A \not\models AG\neg B$, then we cannot conclude that C is not safe with respect to B, since the countereexample for A may be spurious. We call a method that checks whether or not a countereexample is spurious a validation method. If the validation method discovers that the countereexample is spurious, then the countereexample is used to refine A. We now introduce a scheme for countereexample-guided abstraction refinement (CEGAR) to verify safety properties for a given concrete model. The basic principle is to repeat the following sequence of steps until the property is verified or refuted [11]. The starting point is a concrete model C and an abstract model A (we propose in Sec. 5.1 a specific way to obtain an initial abstract model for hybrid systems). The first step is then to analyze $A \models AG\neg B$ by model checking. If this property holds it can immediately be concluded from Lemma 1 that C is safe, too. Otherwise a countereexample is obtained, and we must verify whether it has a corresponding real countereexample in C. If so, then the safety property does not hold for C. Otherwise, i.e., when the countereexample is spurious, the countereexample is used to refine the model A. That is, a new and more detailed model A' with $C \nsubseteq A' \subseteq A$ is produced, which excludes the spurious countereexample.

The procedure of model checking, validation of the countereexample, and refinement of the abstract model is repeated until the safety property is proved or refuted for C. The pseudo-code in Fig. 1 summarizes this procedure:

The crucial steps in the CEGAR procedure are model checking, validation, and refinement. With respect to model checking, standard algorithms for AG-properties can be used [12].

For validating a countereexample, the important ingredient is the computation of successors of states. We define an operator succ that determines the successor states from a given set $\hat{S} \subseteq S$ by $\text{succ}(\hat{S}) = \{s \in S \mid \exists \hat{s} \in \hat{S} : (\hat{s}, s) \in E\}$. This set may not be exactly computable for a given concrete model C, i.e. only over-approximations $\text{over}\text{-}\text{approx}(\hat{S}) \supseteq \text{succ}(\hat{S})$ may be available. We first assume that $\text{succ}(\hat{S})$ is computable.

A countereexample $\hat{\sigma} = (\hat{s}_0, \ldots, \hat{s}_m)$ of A is then validated as follows: Let $S_k = \alpha^{-1}(\hat{s}_k)$, $k \in \{0, \ldots, m\}$ denote the sets of concrete states corresponding to an element of $\hat{\sigma}$. The reachable parts of these sets are recursively defined by $S_0^{\text{reach}} := S_0$, $S_k^{\text{reach}} := \text{over}\text{-}\text{approx}(S_{k-1}^{\text{reach}}) \cap S_k$, $k \in \{1, \ldots, m\}$. The countereexample is spurious iff $S_k^{\text{reach}} = \emptyset$ for at least one k, and we say the countereexample is refuted. Otherwise, the countereexample is validated, and B is reachable.
ALGORITHM: Counterexample-Guided Abstraction Refinement: CEGAR
INPUT: Concrete model C and a set of bad states B
OUTPUT: B is (or is not) reachable

Generate initial abstract model A (bad states are called \hat{B})
Generate counterexample σ (if one exists) by model checking A wrt \hat{B}

WHILE σ exists DO
 Validation of σ
 IF σ validated THEN terminate with “B reachable”
 ELSE
 Generate refined model A' using counterexample σ
 $A := A'$
 Generate next σ by model checking A wrt \hat{B}
 ENDIF
ENDDO
Terminate with “B not reachable”

Figure 1: CEGAR: Scheme for verifying/falsifying $C \models \text{AG} \neg B$ based on counterexample-guided abstraction refinement

If the counterexample is refuted with $S_k^{\text{reach}} = \emptyset$, the model A is refined into a new finite abstract model $A' = (\hat{S'}, \hat{S}_0', \hat{E}')$ (cf. Defn. 3). The refined model should take into account that there are no concrete transitions from states in S_k^{reach} to states in S_k. We therefore require that the set \hat{E}' of A' not contain transitions in the set $\{ (\alpha'(s_1), \alpha'(s_2)) \mid \exists s_1 \in S_k^{\text{reach}}, s_2 \in S_k \}$. Thus, successive refined models will exclude previously explored counterexamples. A method for the refinement of abstract models for infinite-state systems will be presented in the next section.

3. Refinement of Abstract Models

This section presents a specific method for refining an abstract model A. The main idea is to directly use the information obtained from the validation procedure to refine certain abstract states. Assume that the abstract model includes a transition between \hat{s}_1 and \hat{s}_2, while the validation of the counterexample has revealed that only a subset of concrete states in $S_2 := \alpha^{-1}(\hat{s}_2)$ is reachable from concrete states in $S_1 := \alpha^{-1}(\hat{s}_1)$. In this case we refine A by splitting \hat{s}_2 into two new states. The first one, denoted by \hat{s}_2^{reach}, represents the reachable subset of S_2, given by $S_2^{\text{reach}} := \text{succ}(S_1) \cap S_2$. The second one, denoted by \hat{s}_2^{comp}, represents the complement of the reachable part, given by $S_2^{\text{comp}} := S_2 \setminus S_2^{\text{reach}}$. In addition, the abstraction function that maps concrete states to abstract ones also has to be refined.

Definition 6 State Splitting. Consider a concrete model $C = (S, S_0, E)$ and an abstract model $A = (\hat{S}, \hat{S}_0, \hat{E})$ with an abstraction function $\alpha : S \to \hat{S}$. Let $(\hat{s}_1, \hat{s}_2) \in \hat{E}$ be a transition of a counterexample $\hat{\sigma}$. Then, we define ρ_{split} to be a function that maps A, α, and $(\hat{s}_1, \hat{s}_2) \in \hat{E}$ onto both an abstract model $A' = (\hat{S}', \hat{S}_0', \hat{E}')$ and an abstraction function $\alpha' : S \to \hat{S}'$, i.e., $(A', \alpha') = \rho_{\text{split}}(A, \alpha, (\hat{s}_1, \hat{s}_2))$, defined as follows:

- $\hat{S}' = (\hat{S} \setminus \{ \hat{s}_2 \}) \cup \{ \hat{s}_2^{\text{reach}}, \hat{s}_2^{\text{comp}} \}$
algorithm in Fig. 2, called INFINITE-STATE-CEGAR, which uses the functions Transition Purging.

\[\alpha'(s) = \begin{cases}
 \alpha(s) & \text{if } s \not\in S_2 \\
 \mathcal{S}_2^{\text{reach}} & \text{if } s \in S_2^{\text{reach}} \\
 \mathcal{S}_2^{\text{comp}} & \text{if } s \in S_2^{\text{comp}}
\end{cases} \]

- \(\hat{S}_0 = \{ \hat{s}' \in \hat{S} | \alpha''(\hat{s}') \in \hat{S}_0 \} \)
- \(\hat{E}' = \{ (\hat{s}_1', \hat{s}_2') \in \hat{S} \times \hat{S}' | \exists \hat{s}_1, \hat{s}_2 \in \hat{S} : (\hat{s}_1, \hat{s}_2) \in \hat{E} \land \hat{s}_1 = \alpha''(\hat{s}_1') \land \hat{s}_2 = \alpha''(\hat{s}_2') \} \}

where \(\alpha'' : \hat{S} \rightarrow \hat{S} \) maps \(\hat{s}' \) to itself if \(\hat{s}' \not\in \{ \mathcal{S}_2^{\text{reach}}, \mathcal{S}_2^{\text{comp}} \} \), and to \(\hat{s}_2 \) otherwise.

Notice that, while this definition is very general in scope, for practical purposes (and in particular computer implementation) it is necessary to place restrictions on the abstraction functions as well as the various sets we compute to ensure that the subsequent calculations be feasible. For instance, in our case all sets are represented by polyhedra, although other types of representations are possible.

Lemma 2 Let \(A = (\hat{S}, \hat{S}_0, \hat{E}) \) be an abstract model of \(C = (S, S_0, E) \) with abstraction function \(\alpha : S \rightarrow \hat{S} \). For a given transition \((\hat{s}_1, \hat{s}_2) \in \hat{E} \), assume that \(S_2^{\text{reach}} \neq \emptyset \). Then \((A', \alpha') := \rho_{\text{split}}(A, \alpha, (\hat{s}_1, \hat{s}_2)) \) is a refinement of \(A \), i.e., \(A \succeq A' \succeq C \).

The idea of splitting an abstract state has also been considered by Jeannet et al. [24]. However, their method does not address hybrid systems, and it uses forward and backward reachability on the abstract model rather than counterexamples to decide which state to split. One advantage (among others) of a counterexample-based approach is that it terminates quickly when a discovered counterexample is not spurious and thus proving that the safety property does not hold for the concrete system.

As a next step, we consider the case where the set of successors of \(S_1 \) and the set \(S_2 \) are disjoint. In this case, we can simply omit the corresponding abstract transition.

Definition 7 Transition Purging. The function \(\rho_{\text{purge}} \) maps a given abstract model \(A = (\hat{S}, \hat{S}_0, \hat{E}) \), an abstraction function \(\alpha : S \rightarrow \hat{S} \) and a transition \((\hat{s}_1, \hat{s}_2) \in \hat{E} \) to \(A' = (\hat{S}, \hat{S}_0, \hat{E}') \) with \(\hat{E}' = \hat{E} \setminus \{(\hat{s}_1, \hat{s}_2)\} \).

Lemma 3 Let \(A = (\hat{S}, \hat{S}_0, \hat{E}) \) be an abstract model of \(C = (S, S_0, E) \) with the abstraction function \(\alpha : S \rightarrow \hat{S} \). For a given transition \((\hat{s}_1, \hat{s}_2) \in \hat{E} \), assume that \(S_2^{\text{reach}} = \emptyset \). Then \(A' := \rho_{\text{purge}}(A, \alpha, (\hat{s}_1, \hat{s}_2)) \) is a refinement of \(A \), i.e., \(A \succeq A' \succeq C \).

Based on these results, we now present a more specific formulation of the CEGAR algorithm in Fig. 2, called INFINITE-STATE-CEGAR, which uses the functions \(\rho_{\text{split}} \) and \(\rho_{\text{purge}} \) for refinement.

Correctness of the algorithm is implied by the following lemma.\(^a\) Note that termination of the algorithm cannot be guaranteed as the number of states in the concrete model may be infinite, and a finite abstract model to verify (or disprove) the given property may not exist [18].

Lemma 4 If the algorithm terminates with “B reachable”, then \(C \models \neg A G B \), and if the algorithm terminates with “B not reachable”, then \(C \models A G B \).

\(^a\)The proofs of all lemmas in the paper can be found in the appendix.
Algorithm: Infinite-State-Cegar

Input: Concrete model C and a set of bad states B

Output: B is (or is not) reachable

Generate initial abstract model A and abstraction function α

$\hat{B} := \alpha(B)$

Generate counterexample $\hat{\sigma} = (\hat{s}_0, \ldots, \hat{s}_m)$ by model checking of A wrt \hat{B}

$S_0^{reach} := \alpha^{-1}(\hat{s}_0)$

WHILE $\hat{\sigma}$ exists DO

// validation of counterexample

$k := 0$

WHILE $S_k^{reach} \neq \emptyset$ AND $k < m$ DO

$k := k + 1$

$S_k^{reach} := \text{succ}(S_{k-1}^{reach}) \cap \alpha^{-1}(\hat{s}_k)$

ENDDO

// if counterexample is validated, then terminate, else refine

IF $S_k^{reach} \cap B \neq \emptyset$ THEN terminate with "B reachable"

ELSE

FOR $l = 1, \ldots, k$

// split abstract state \hat{s}_l into two: one that corresponds
// to S_l^{reach} and one that corresponds to $\alpha^{-1}(\hat{s}_l) \setminus S_l^{reach}$

IF $S_l^{reach} \neq \alpha^{-1}(\hat{s}_l)$

THEN $(A, \alpha) := \rho_{split}(A, \alpha, (\hat{s}_{l-1}, \hat{s}_l))$

ENDIF

ENDFOR

// remove spurious transition between \hat{s}_{k-1} and \hat{s}_k

$A := \rho_{purg}(A, \alpha, (\hat{s}_{k-1}, \hat{s}_k))$

Generate $\hat{\sigma}$ by model checking of A wrt \hat{B}

ENDIF

ENDDO

Terminate with "B not reachable"

Figure 2: Infinite-State-Cegar.

The proposed procedure of validating counterexamples and refining abstract models is based on the computation of successor states. Alternatively, one could formulate a similar algorithm that uses sets of predecessors, or even a combination of both as presented in [11] and [13].

The Infinite-State-Cegar algorithm in Fig. 2 is based on the assumption that sets of successor states are exactly computable. Unfortunately, this rarely occurs in practice for hybrid systems, and one must settle for an over-approximation of the successor function succ. In this case, the counterexample validation step may become overly conservative, in that the algorithm may fail to refute a spurious counterexample.\(^b\) On the other hand, we have:

\(^b\) We discuss this point in greater detail in the next section.
Lemma 5 If the Infinite-State-CEGAR algorithm using over-approximations in computing successor states terminates with “B not reachable”, then $C \models \text{AG}\neg B$.

Example. Let us borrow Hofstadter’s “MU-puzzle”[23] to illustrate the salient issues at hand.

The MIU-system is a simple rewrite system over alphabet $\Sigma = \{M, I, U\}$, with initial string MI, and production rules

1. $xI \rightarrow xU$
2. $Mx \rightarrow Mxx$
3. $x\text{ll}y \rightarrow xUy$
4. $xUUy \rightarrow xy$

where $x, y \in \Sigma^*$ are arbitrary finite strings, and string concatenation is denoted as simple juxtaposition. For example, from the initial string MI, one can derive the new string MIU through an application of Rule 1.

The MU-puzzle asks whether this rewrite system can ever derive the string MU.

We model this as a safety property over an infinite transition system $C = (S, S_0, E)$, as follows. Let $S = \Sigma^*$, $S_0 = \{MI\}$, and

$E = \{(xI, xU), (Mx, Mxx), (x\text{ll}y, xUy), (xUUy, xy) \mid x, y \in \Sigma^*\}$.

Let $B = \{MU\}$. It is clear that $C \models \text{AG}\neg B$ if and only if the MU-puzzle cannot be solved, in other words if the string MU cannot be derived in the MIU-system.

The abstract models of C that we shall consider ‘lump together’ states (i.e., Σ-strings) of S. The first step is to choose an initial abstract model. The only obligatory requirement is that this model should separate the initial state(s) from the bad state(s). An additional desirable property of the initial partition is that it should also be reasonably coarse, so as to minimize the number of abstract states and correspondingly allow for efficient model checking.

Let us first introduce some auxiliary definitions. For $x \in \Sigma^*$, let $\xi_4 x$ represent the number of times the symbol I appears in x, modulo 3. Next, for $j = 0, 1, 2$, let $S^{\equiv j} = \{s \in S \mid \xi_4 s = j\}$. Our initial abstract model is $A_1 = (\{S^{=1}, S^{=0}, S^{=2}\}, \{S^{=1}\}, E_1)$, where $S^{=0, 2} = S^{=0} \cup S^{=2}$ and the transition relation E_1 is depicted below:

![Diagram](image)

The abstraction function $\alpha_1 : S \rightarrow \{S^{=1}, S^{=0, 2}\}$ satisfies $\alpha_1(s) = S^{=1}$ if $\xi_4 s = 1$, and $\alpha_1(s) = S^{=0, 2}$ otherwise. Our set of abstract bad states is $B_1 = \alpha_1(B) = \alpha_1(\{MU\}) = \{S^{=0, 2}\}$.

We now observe that $A_1 \not\models \text{AG}\neg B_1$ since there is a path (consisting of a single transition) from the initial state $S^{=1}$ to the bad state $S^{=0, 2} \in B_1$. However, upon validation over the concrete system C, we find that this counterexample is in fact spurious, since the only one-step transitions from the single initial state $MI \in S_0$ are $MI \rightarrow MIU$ (as per Rule 1) and $MI \rightarrow MIU$ (Rule 2). In other words, $MU \in B$ is not reachable in one step.

We must now refine our initial abstraction in such a way as to exclude this counterexample. As discussed above, we would normally base our next refinement on the successor function succ. Unfortunately, not only is $\text{succ}(S^{=1})$ difficult to compute, but in fact it
turns out that iterating the refinement-counterexample-validation cycle with succ would never terminate, and thus would never allow us to decide whether $C \vdash \text{AG} \neg \text{B}$ or not.

Fortunately, we are able to rely on an over-approximation $\overline{\text{succ}}$ of the successor states: $\overline{\text{succ}}(s) = \{ u \in S \mid \exists \mu \in \text{G}_{\mu} \text{ s.t. } \exists \mu u \equiv 2^{\mu} s \}$. Glancing at the production Rules 1–4, it is clear that $\overline{\text{succ}}$ is indeed an over-approximation of succ; for example, Rule 3 removes three l’s from one term to the next (and therefore leaves the same number of l’s modulo 3), whereas Rule 2 doubles the number of l’s of a term.

We then obtain the second abstraction $A_2 = (\{ S^=0, S^=1, S^=2 \}, \{ S^=1 \}, E_2)$, where E_2 is depicted below:

The abstraction function $\alpha_2 : S \rightarrow \{ S^=0, S^=1, S^=2 \}$ takes $s \in S$ to $S^=1$. We have split the previous abstract state $S^=0,2$ into the two states $S^=0$ and $S^=2$, and updated our transition relation accordingly. Our set of abstract bad states is now $B_2 = \alpha_2(B) = \alpha_2(\{ \text{MU} \}) = \{ S^=0 \}$.

We observe straightaway that $A_2 \not\vdash \text{AG} \neg \text{B}_2$. Lemma 5 then implies that $A \not\vdash \text{AG} \neg \text{B}$, and hence that the MIU-system cannot derive the string MU.

In general, as this example demonstrates, finding an initial abstraction, a suitable over-approximation of the successor function, and performing efficient model refinements, can be difficult and subtle tasks. In particular, these choices may require a good deal of insight. However, we show in Section 5 that for hybrid systems one can find effective heuristics to handle these problems.

4. Hybrid Systems

Hybrid systems are a class of infinite state systems that include both continuous and discrete state variables. This section presents the syntax and semantics of hybrid automata, which are used to model hybrid systems. We will illustrate these definitions with an example that models a simple car controller. The same example will be used in later sections to illustrate the CEGAR approach to the verification of hybrid systems.

Definition 8 Syntax of the Hybrid Automaton HA. A hybrid automaton is a tuple $HA = (Z, z_0, X, \text{inv}, X_0, T, g, j, f)$ where

- Z is a finite set of locations with an initial location $z_0 \in Z$.
- $X \subseteq \mathbb{R}^n$ is the continuous state space.
- $\text{inv} : Z \rightarrow 2^X$ assigns to each location $z \in Z$ an invariant of the form $\text{inv}(z) \subseteq X$.
- $X_0 \subseteq X$ is the set of initial continuous states. The set of initial hybrid states of HA is thus given by the set of states $\{ z_0 \} \times X_0$.
- $T \subseteq Z \times Z$ is the set of discrete transitions between locations.
- $g : T \rightarrow 2^X$ assigns a guard set $g((z_1, z_2)) \subseteq X$ to $(z_1, z_2) \in T$.
- $j : T \times X \rightarrow 2^X$ assigns to each pair $(z_1, z_2) \in T$ and $x \in g((z_1, z_2))$ a jump set $j((z_1, z_2), x) \subseteq X$.

9
\(f : Z \rightarrow (X \rightarrow \mathbb{R}^n) \) assigns to each location \(z \in Z \) a continuous vector field \(f(z) \). We use the notation \(f_z \) for \(f(z) \). The evolution of the continuous behavior in location \(z \) is governed by the differential equation \(\dot{x}(t) = f_z(x(t)) \). We assume that the differential equation has a unique solution for each initial value \(x(0) \in \text{inv}(z) \).

The semantics of \(HA \) is defined by means of a trace transition system. Each state \((z,x) \) in the trace transition system corresponds to a continuous state \(x \) within location \(z \). Two such states, \((z_1,x_1) \) and \((z_2,x_2) \), are connected by a transition in the trace transition system if and only if state \((z_2,x_2) \) can be reached from state \((z_1,x_1) \) by a continuous evolution within location \(z_1 \) followed by a discrete transition to location \(z_2 \).

Definition 9 Semantics of the Hybrid Automaton \(HA \). The semantics of a hybrid automaton \(HA \) is a transition system \(TTS = (S, S_0, E) \) with:

- the set of all hybrid states \((z,x) \) of \(HA \),
 \[
 S = \bigcup_{z \in Z} \bigcup_{x \in \text{inv}(z)} \{(z,x)\}
 \]

- the set of initial hybrid states \(S_0 = \{z_0\} \times X_0 \).
- transitions \((s_1, s_2) \in E \) with \(s_1 = (z_1,x_1) \), \(s_2 = (z_2,x_2) \), iff there exists \((z_1,z_2) \in T \) and a trajectory \(\chi : [0, \tau] \rightarrow X \) for some \(\tau \in \mathbb{R}^{\geq 0} \) such that:
 - \(\chi(0) = x_1 \), \(\chi(\tau) \in g((z_1,z_2)) \),
 - \(x_2 \in j((z_1,z_2), \chi(\tau)) \),
 - \(\dot{\chi}(t) = f_z(\chi(t)) \) for \(t \in [0, \tau] \),
 - \(\chi(t) \in \text{inv}(z_2) \) for \(t \in [0, \tau] \),
 - \(x_2 \in \text{inv}(z_2) \).

A path \(\sigma = (s_0, s_1, s_2, \ldots, s_m) \) of \(TTS \) is called a trace of \(HA \), and we refer to \(TTS \) as the trace transition system of \(HA \).

Definition 10 Safety of a Hybrid Automaton. For a hybrid automaton \(HA \) with a semantics as in Defn. 9, let \(z_b \in Z \setminus \{z_0\} \) denote an unsafe location. \(HA \) is said to be safe with respect to \(z_b \), denoted by \(TTS \models AG \neg z_b \) iff for all traces \(\sigma \) there is no \(s \in \sigma \) with \(s = (z_b, x) \) for some \(x \in X \). We write \(TTS \models AG \neg z_b \) otherwise.

The extension of the analysis task to multiple initial locations, multiple unsafe locations, and locations containing both safe and unsafe states are straightforward but omitted here for simplicity.

Example. As a motivating example, we consider a simple controller that steers a car along a straight road. The car is assumed to drive at a constant speed \(r = 2 \), and its motion is modeled by the distance \(x \) from the middle of the road (\(x = 0 \) corresponds to the middle) and the heading angle \(\gamma \) (\(\gamma = 0 \) corresponds to moving straight ahead). Fig. 3 shows a scenario in which the car is initially on the road. The controller is able to detect whether the car is on the left or right border (i.e., \(x \leq -1 \), \(x \geq 1 \)). Whenever the car enters the left border, the controller forces it to turn right until the car is back on the road again.
Figure 3: i) Initially, the car drives on the road with heading angle γ. ii) If the controller detects that the car has left the road, it corrects the heading by turning right to avoid the canal. iii) Once the car is back on the road, a left turn is initiated until the car moves straight again.

Then a left turn is initiated, and continued until the car is again going straight ahead in the direction of the road, i.e. when the heading is aligned with the road ($\gamma = 0$). A similar strategy is employed when the car enters the right border.

Fig. 4 shows a hybrid automaton model for this example. Besides the position x and the heading angle γ, the description includes an internal timer c, that the controller uses to time the steering maneuvers. The differential equations for these three continuous variables depend on the location: we have $\dot{x} = -r \cdot \sin(\gamma)$ in all locations except in canal. The derivative of γ varies when a border is reached. On the border the motion of the car describes an arc with the angular velocity $\dot{\gamma} = -\omega = -\pi/4$ (or $\omega = \pi/4$ respectively), i.e., the arc is part of a circle with radius r/ω. The timer c measures the time period which the car spends on the border. In the correction modes the timer decreases with double rate, i.e., the correction takes half the time as that spent previously by the car on the border. Since the sign of $\dot{\gamma}$ is reversed when the car moves back on the road, the angle has the value zero when the correction mode is left ($c = 0$), i.e., the car then moves along the road. During this correction it might, however, happen that the other border is reached, which means that the controller then switches to the strategy of the corresponding location.

The three continuous variables are initialized to $-1 \leq x \leq 1$ (the car is on the road), $-\pi/4 \leq \gamma \leq \pi/4$, and $c = 0$. It has to be verified for this set of initial states whether the given control strategy guarantees that the unsafe location in $\text{canal}(z_B)$ is never reached. The following sections explain how this task can be solved by abstraction-based and counterexample-guided verification.

5. Refinement of Abstractions for Hybrid Systems

This section applies the general concepts of Section 3 to hybrid systems. We present specific solutions for the two crucial steps in INFINITE-STATE-CEGAR, validation and refinement. The key to the validation step is the computation of successor states for a given set of states in the trace transition system. Starting from the initial set, the validation procedure computes the successors along the counterexample until either the unsafe location z_B is reached or a transition is determined to be spurious. The computation of sets of successor states is usually the most expensive step in hybrid system verification. Successor sets can be computed and represented exactly only for certain sub-classes of hybrid systems [27, 20]. However, several approaches to over-approximate successor sets have been published, as e.g., successor set approximations by hyper-rectangles [14], general polyhedra [6], projec-
5.1. Abstraction of Hybrid Systems

Models based on the use of different methods for computing successor states can be obtained, and then focus on the validation of counterexamples and refinement of abstract states. If, for instance, a faster but maybe less accurate technique is sufficient to refute a counterexample, one can usually define the transition relation for an abstraction function globally—many transitions can be constructed simultaneously.

Consequently, given an abstraction function, one has to construct the transition relation by focusing on one transition at a time in the abstract system. By contrast, in the finite-state and discrete infinite-state cases, one can usually define the transition relation for hybrid systems.

We note that the main difficulties introduced by hybrid systems—as opposed to finite-state or discrete infinite-state systems such as the MIU-system—originate from the fact that the transition relation for hybrid systems is implicit, derived from differential equations which in general do not even have analytical solutions. Even when analytical solutions are available, the representation and computation of successor sets is non-trivial, making it difficult to manufacture reasonably tight over-approximations to the successor function. Consequently, given an overapproximation to the successor function, one has to construct the transition relation by focusing on one transition at a time in the abstract system. By contrast, in the finite-state and discrete infinite-state cases, one can usually define the transition relation for an abstraction function globally—many transitions can be constructed simultaneously.

The verification framework presented here can include different techniques to over-approximate the set of successors. The idea of using different methods is motivated by the trade-off between the accuracy and the computational complexity of different methods. If, e.g., a faster but maybe less accurate technique is sufficient to refute a counterexample, then there is no need to use a more computationally expensive method.

In the following, we first describe how an initial abstraction for a hybrid automaton can be obtained, and then focus on the validation of counterexamples and refinement of abstract models based on the use of different methods for computing successor states.

5.1. Abstraction of Hybrid Systems

For the first step of the INFINITE-STATE-CEGAR algorithm, the construction of an initial abstraction, we introduce one abstract state for each location of HA. This means that two hybrid states \((z_i, x_i)\) and \((z_j, x_j)\) of TTS are mapped to the same abstract state if and only if \(z_i = z_j\). This rule applies for all but the initial location, for which we introduce one abstract state \(\delta_0\) to represent all initial hybrid states of TTS, and another one (\(\hat{\delta}_0\)) to represent the remaining hybrid states corresponding to the location \(\delta_0\):

Definition 11 Initial Abstraction of Hybrid Systems. *Given a hybrid automaton HA with*
Z = \{z_0, z_1, \ldots, z_n\}, let S denote the set of hybrid states as defined in (1). For i ∈ \{0, 1, \ldots, n\}, we define the abstraction function \(\alpha : S \rightarrow \hat{S}\) by:

\[
\alpha(z_i, x) = \begin{cases}
\hat{s}_0 & \text{if } i = 0 \land x \in X_0 \\
\hat{s}'_0 & \text{if } i = 0 \land x \notin X_0 \\
\hat{s}_i & \text{otherwise}
\end{cases}
\]

and the initial abstract model \(A = (\hat{S}, \hat{S}_0, \hat{E})\) is defined by (i ∈ \{0, 1, \ldots, n\}, j ∈ \{0, 1, \ldots, n\}):

- \(\hat{S} = \{\hat{s}', \hat{s}_0, \hat{s}_1, \ldots, \hat{s}_n\}\)
- \(\hat{S}_0 = \{\hat{s}_0\}\)
- \(\hat{E} = \{(\hat{s}_i, \hat{s}_j) | (z_i, z_j) \in T\} \cup \{(\hat{s}', \hat{s}_0) | (z_0, z_0) \in T\} \cup \{(\hat{s}_i, \hat{s}'_0) | (z_i, z_0) \in T\}^\circ\)

The initial abstract model represents the discrete structure of the hybrid system without regard to the continuous dynamics and guards. Given this definition, it has to be shown that \(A\) is indeed an abstract model of the underlying trace transition system, i.e., that it fulfills Defn. 2:

Lemma 6 For HA with trace transition system \(TTS = (S, S_0, E)\), let \(A = (\hat{S}, \hat{S}_0, \hat{E})\) denote the initial abstract model for \(TTS\). Then, \(A \succeq TTS\).

Example (cont.) Fig. 5 depicts the initial abstract model of the hybrid system in Fig. 4. It is a copy of the discrete part of the hybrid system, except that the initial location is divided into two parts: \(\hat{s}_0\) represents the states in location \texttt{go-ahead} with \(x \in [-1, 1]\), \(\gamma \in [-\pi/4, \pi/4]\) and \(c = 0\), and \(\hat{s}'_0\) all other states in \texttt{go-ahead}. The abstract states \(\hat{s}_1\) to \(\hat{s}_6\) represent the hybrid states of the other locations (\texttt{left-border}, \texttt{right-border}, \texttt{correct-left}, \texttt{correct-right}, \texttt{straight-ahead} and \texttt{in-canal}, respectively).

5.2. Over-approximation of the Sets of Successors

We now turn to the question of computing sets of successor states, as required in the validation and refinement steps. The goal is to use different over-approximations with different precisions and different computational requirements. For technical reasons it is convenient to define \(\text{succ}^\circ\) in terms of pairs \(S_1, S_2 \subseteq S\), where \(S_1\) is a set of source states and \(S_2\) is a set of potential successor states. \(\text{succ}^\circ(S_1, S_2)\) is a conservative approximation of those successors of states in \(S_1\) that lie in \(S_2\).

Definition 12 Over-approximation of successor states. Let HA be a hybrid automaton with the trace transition system \(TTS = (S, S_0, E)\), and let \(A\) and \(\alpha\) be defined as in Defn. 11. For a transition \((\hat{s}_1, \hat{s}_2) \in \hat{E}\) of \(A\), we call \(S_1 := \alpha^{-1}(\hat{s}_1)\) the set of hybrid source states and \(S_2 := \alpha^{-1}(\hat{s}_2)\) the set of potential hybrid successor states. Then \(\text{succ}^\circ : (2^S \times 2^S) \rightarrow 2^S\) is an over-approximation of the hybrid successor states in \(S_2\) iff the following holds:
• $\text{succ}(S_1, S_2) \subseteq S_2$.
• $\text{succ}(S_1, S_2) \supseteq \text{succ}(S_1) \cap S_2$.

A possible explicit realization of the operator succ with respect to a given set S_2 combines the following steps: (a) We approximate the continuous evolution starting with the set S_1. Usually, this step is the most costly of the whole verification procedure. We then compute the reachable part of the guard set $g(t)$, where $t = (z_1, z_2)$ is a transition of the hybrid automaton that corresponds to the abstract transition (δ_1, δ_2). (b) We apply the jump function $j(t, x)$ to this part of the guard set. (c) We then intersect the resulting image with the set S_2.

Figure 6: All trajectories that originate in S_1 leave the invariant when $c = 0$, and none of them comes close to S_2. Figure (i) shows the result of the optimization method. Figure (ii) the result of the method that enclose the trajectories by polyhedra.

Example (cont.) Our prototype implementation uses two different methods, $\text{succ}_{\text{coarse}}$ and $\text{succ}_{\text{tight}}$, to over-approximate the set of successor states. Fig. 6 illustrates these two methods for the discrete transition from correct_right to left_border. For location correct_right we choose S_1 as subset of the plane $x = 1$, and S_2 as all states of location left_border that satisfy the invariant $-2 \leq x \leq -1$. Fig. 6 depicts S_1 and the face of S_2 that coincides with the guard $x = -1$. The transition is not spurious if there exists a trajectory that starts in S_1 and ends in S_2 without leaving the invariant of correct_right ($-1 \leq x \leq 1 \land c \geq 0$). Fig. 6 (i) depicts a number of trajectories that start in S_1, none of which reach S_2.

The first method $\text{succ}_{\text{coarse}}$ poses the existence question for a trajectory between S_1 and S_2 as an optimization problem. The distance between a trajectory and S_2 is defined as the minimum distance between all points on the trajectory and S_2. If the global minimum over all trajectories that start in S_1 is strictly greater than zero, then no successor state of S_1 exists in S_2. In this case $\text{succ}_{\text{coarse}}(S_1, S_2)$ returns an empty set. If the minimum distance is zero, at least one corresponding concrete path exists, and $\text{succ}_{\text{coarse}}(S_1, S_2)$ returns the entire set S_2 as an over-approximation of the set of successor states. The bold trajectory in Fig. 6 (i) is the optimal trajectory. Its distance to S_2 is greater than zero, and there is hence no trajectory from S_1 to S_2.

The second method $\text{succ}_{\text{tight}}$ computes polyhedra that enclose all trajectories that originate in S_1. This over-approximation with polyhedra is based on work presented in [6].
The set of successor states $\text{successor}_{high}(S_1, S_2)$ is then obtained by intersecting the polyhedra with S_2. Fig. 6 (ii) shows that this intersection is empty, i.e. there are no successors of S_1 in S_2.

5.3. Validation and Refinement

The INFINITE-STATE-CEGAR algorithm makes a clear distinction between the validation of a counterexample, and the refinement of the abstract model. For hybrid systems, we propose a slightly different approach, in which the steps of validation and refinement are interleaved. We assume to have a set of over-approximation techniques $\text{successor}_1, \ldots, \text{successor}_n$ that can (but not necessarily need to) establish a hierarchy of coarse to tight approximations.

The proposed algorithm for the combined validation and refinement steps of a counterexample is shown in Fig. 7. Let $\sigma = (\hat{s}_0, \ldots, \hat{s}_m)$ denote a counterexample of the abstract model A. The algorithm consists of two nested loops. The outer loop corresponds to checking each transition of the counterexample. The inner loop applies each of the over-approximation techniques to the current transition of the counterexample, and, depending on the result, one of the two refinement operations is executed: If an over-approximation technique successor_l reveals that the current transition is spurious, i.e. $S^\text{reach}_k = \emptyset$, then the transition is removed from the abstract model by $\rho_{\text{p Urge}}$. When a transition is removed, the set of behaviors of A does not include the current counterexample anymore, and thus the combined validation and refinement of the current counterexample is completed.

\begin{verbatim}
 FOR $k = 1, \ldots, m$
 FOR $l = 1, \ldots, n$
 $S^\text{reach}_k := \text{successor}_l(S^\text{reach}_{k-1}, \alpha^{-1}(\hat{s}_k))$
 IF $S^\text{reach}_k = \emptyset$
 $A := \rho_{\text{p Urge}}(A, \alpha, (\hat{s}_{k-1}, \hat{s}_k))$
 RETURN //jump out of both loops
 ELSEIF $S^\text{reach}_k \subseteq \alpha^{-1}(\hat{s}_k)$
 $(A, \alpha) := \rho_{\text{split}}(A, \alpha, (\hat{s}_{k-1}, \hat{s}_k))$
 ENDIF
 ENDFOR
ENDFOR
\end{verbatim}

Figure 7: Refinement and validation steps for hybrid systems.

If on the other hand, successor_l returns a non-empty set S^reach_k and this set is a true subset of the states corresponding to \hat{s}_k, the function ρ_{split} divides \hat{s}_k into two states \hat{s}^reach_k and \hat{s}^comp_k (cf. Defn. 6). In this case however $\sigma = (\hat{s}_0, \ldots, \hat{s}_{k-1}, \hat{s}^\text{reach}_k, \hat{s}_{k+1}, \ldots, \hat{s}_m)$ remains a counterexample of the refined model. Thus the algorithm continues with the next transition $(k+1)$ until either $S^\text{reach}_k = \emptyset$ or until the last transition of the counterexample is validated.

There is some freedom in combining the steps of validation and refinement, i.e., the scheme in Fig. 7 is just one possible implementation. In addition there is a trade-off between the availability of multiple methods and the risk of unnecessarily refining our ab-
which returns a set counterexample exists: Assume that the procedure terminates with a counterexample that cannot be refuted. Since the validation procedure relies on over-approximations, it cannot be guaranteed that this abstract counterexample corresponds to a concrete one. In this case, under-approximations of sets of successor states can possibly be used to prove that a forbidden state cannot be reached or that there exists a counterexample that cannot be refuted. Similarly to Defn. 12, we can define an under-approximation of successor states \(S^{\text{reach}}_k = \text{succ}(S^{\text{reach}}_{k-1}, \alpha^{-1}(\delta_k)) \) which returns a set \(S^{\text{reach}}_k \subseteq \alpha^{-1}(\delta_k) \) guaranteed to contain only true successors of \(S^{\text{reach}}_{k-1} \). If this operator is applied along the counterexample (from \(k = 1 \) to \(k = m \)) and \(S^{\text{reach}}_m \neq \emptyset \), there exists at least one path for the hybrid system which violates the safety property.

As noted earlier, when using over-approximations, there is no guarantee that a spurious counterexample can be refuted. The likelihood of refuting spurious counterexamples can be increased, however, by using tighter polyhedral approximations. When the over-approximations are tight, the presence of an unfound yet spurious counterexample is indicative of a very slim error margin separating the reachable states from the bad ones. We would argue that when an unfound spurious counterexample is encountered, it may be better to redesign the implementation of our hybrid system so as to increase the error margin, rather than risk facing an actual failure in a real-world implementation of this system.

If we compare the verification algorithm for hybrid systems presented here to similar approaches in the literature such as [7], we note that the main advantage of our method is that, in relying on spurious counterexamples to refine our successive abstract models, we are focusing on the local properties of our system that are relevant to establish or invalidate a particular specification. This leaves us free, for instance, to employ cheap gross over-approximations of successor states in irrelevant areas of the hybrid system.
Example (cont.) The requirement that the hybrid model in Fig. 4 should never enter the location canal translates into the reachability question for state \(\hat{s}_6 \) of the abstract model in Fig. 5. The first counterexample for the initial abstract model is \(\sigma_1 = (\hat{s}_0, \hat{s}_1, \hat{s}_6) \) (see Fig. 8 (i)). The validation procedure considers first the transition \((\hat{s}_0, \hat{s}_1)\) which corresponds to the transition between \textit{go ahead} and \textit{left border} in the hybrid automaton. As a first step, \(\text{smcc coarse}(\hat{s}_0, \alpha^{-1}(\hat{s}_1)) \) is computed with the result that the minimum distance over all initial states is zero. This is obvious from the fact that those states of the initial set for which \(x = -1 \) enable the transition guard immediately. Thus, \(\text{smcc coarse} \) returns the entire invariant of location \textit{left border} as set \(S_2 \). The next step is to compute \(S_2^{\text{reach}} = \text{smcc height}(\hat{s}_0, \alpha^{-1}(\hat{s}_1)) \). The algorithm then splits \(\hat{s}_1 \) so that \(\hat{s}_1 \) represents the set \(S_2^{\text{reach}} \), and the new abstract state \(\hat{s}_1' \) represents \(S_2 \setminus S_2^{\text{reach}} \) (Fig. 8 (ii)).

Since the counterexample has not been eliminated yet, the transition \((\hat{s}_1, \hat{s}_6)\) is considered next. Method \(\text{smcc coarse} \) finds that the minimal distance between the trajectories that start in \(S_2^{\text{reach}} \) and the guard \(x = -2 \) is greater than zero. This means that no trajectory reaches the guard, and the corresponding transition is removed (Fig. 8 (iii)).

The procedure continues with the next counterexample \(\sigma_2 = (\hat{s}_0, \hat{s}_2, \hat{s}_4, \hat{s}_1', \hat{s}_6) \), as depicted in Fig. 8 (iv). As for the first counterexample, the abstract state \(\hat{s}_2 \) is split into the states that are reachable from the initial set \(S_0 \), and the remainder (Fig. 8 (v)). Then, the procedure moves forward one transition and splits state \(\hat{s}_4 \) as a result of applying \(\text{smcc height} \). The reachable part is represented by \(\hat{s}_4 \) in Fig. 8 (vi). Method \(\text{smcc coarse} \) then finds that one cannot reach any state that is represented by \(\hat{s}_4' \) from this set, and the transition \((\hat{s}_4, \hat{s}_4')\) can be deleted from \(A \) (Fig. 8 (vii)).

The final counterexample is \(\sigma_3 = (\hat{s}_0, \hat{s}_1, \hat{s}_3, \hat{s}_2', \hat{s}_4', \hat{s}_1', \hat{s}_6) \). The state \(\hat{s}_1 \) was already split for the first counterexample. Similarly to the procedure for the counterexample \(\sigma_2 \), abstract state \(\hat{s}_3 \) is split as depicted in Fig. 8 (viii). It can then be shown that transition \((\hat{s}_3, \hat{s}_3')\) is spurious, which eliminates the last counterexample (Fig. 8 (ix)). Consequently, the abstract state \(\hat{s}_6 \) is not reachable, and thus the same applies for the location canal of the hybrid automaton.

5.4. Validation and Refinement of Fragments of Counterexamples

The initial abstraction of the example in Fig. 5 contains only two counterexamples without cycles, \((\hat{s}_0, \hat{s}_1, \hat{s}_6)\) and \((\hat{s}_0, \hat{s}_2, \hat{s}_4, \hat{s}_1, \hat{s}_6)\). However, to show that no bad state is reachable, three counterexamples in the series of abstractions were considered and refuted (cf. Fig. 8). Hence, refining an abstract model, to eliminate a particular counterexample, may introduce new counterexamples. In this subsection we show that considering fragments of counterexamples, rather than complete counterexamples, can reduce the total number of counterexamples that have to be considered. This often results in a significant speed-up of the verification process.

The main reason for considering fragments is as follows. The validation and refinement routine that we presented in the previous subsection typically refutes a counterexample (indeed, when a counterexample is not refuted, the algorithm stops). The case of refuting a counterexample can be made more efficient by the following observation. In the previous subsection, a (spurious) counterexample \((\hat{s}_0, \ldots, \hat{s}_m)\) is refuted by showing that no corresponding concrete path \((s_0, \ldots, s_m)\) exists. Interestingly, showing that any one of the transitions \((\hat{s}_i, \hat{s}_{i+1})\) in the counterexample is spurious is a sufficient condition for the non-existence of a corresponding concrete path.

Alternatively, we can also conclude that a counterexample is spurious if one of the
fragments $(\delta_i, \delta_{i+1}, \delta_{i+2})$ is spurious, in other words if there is no corresponding concrete path (s_i, s_{i+1}, s_{i+2}) in the concrete model. In general, one can define spurious fragments of length n. Validation and refinement of such fragments of counterexamples can be done in a similar way as for complete counterexamples.

We now illustrate that validation and refinement of short fragments can increase the efficiency of the verification process. Clearly, if one can refute a fragment of a counterexample, e.g., a single transition, then the entire counterexample is spurious. If a counterexample can be refuted by considering a fragment of length n, it can surely be refuted by considering fragments of length $n + 1$. However, using a fragment of length $n + 1$ may have the undesirable side-effect of introducing new counterexamples, or at least more counterexamples than the method based on fragments of length n.

Example (cont.) Consider as an example Fig. 9 (i), which depicts part of the abstract model in Fig. 8 (iv) and contains the counterexample. Note that there is a loop that enters the counterexample at δ_2 and leaves it at δ_4. For this car steering example it can be shown that the fragment $(\delta_2, \delta_4, \delta'_1)$ is spurious, even though neither of the transitions is spurious on its own. This means that validation and refinement of fragments of length 2 removes the counterexample as depicted in Fig. 9 (ii).

If we consider the complete counterexample instead, we also find that the counterexample is spurious. But in this case we would also split δ_2, which introduces an additional counterexample that exploits the loop, as shown in Fig. 9(iii). In general, whenever we split all abstract states between the entry and exit points of a loop, it will ‘open’ the loop, and inevitably create an additional counterexample.

There is little choice if these states have to be split to refute the counterexample. Consider for instance the first counterexample in Fig. 8 (i). This counterexample can only be eliminated by splitting δ_1. But if it is possible to refute a short fragment, rather than a long one, this should be preferred. If we apply validation and refinement to fragments of length 2 of the counterexample in Fig. 8 (iv), we are guaranteed that it will not introduce new counterexamples. If it then succeeds, we can be sure that the number of counterexamples decreases. In this particular case, refuting fragment $(\delta_2, \delta_4, \delta'_1)$ eliminates all other counterexamples, as they also include this fragment.

5.5. Experimental Results

Experimental results for a prototype implementation of the procedure indicate its advantages over existing methods. We apply the prototype first to the car steering example that was discussed throughout this paper. Then a larger and more challenging example on an adaptive cruise control system that was put forward in the MoBIES project [28] is discussed. We compare our results on the latter example with an analysis performed with CheckMate.
5.5.1. Car Steering Example

For the car steering example we take as baseline INFINITE-STATE-CEGAR as described in Subsection 5.3 with the only successor operator \texttt{successor}. We refer to this method as INFINITE-STATE-CEGAR-I. For the car steering example this method computes the same number of \texttt{successor} operations as a breadth-first application of the successor operator. Breadth-first application is the most prevalent method used for model checking hybrid systems.

We compare this method with two instances of INFINITE-STATE-CEGAR. INFINITE-STATE-CEGAR-II refines and validates complete counterexamples using the two different methods, as described in Subsection 5.3. The third instance INFINITE-STATE-CEGAR-III first validates all single transitions using \texttt{successor}. Next, it considers all fragments of length 2, using \texttt{successor}. Finally, the third validation and refinement scheme considers the fragments of length 2 too, but uses \texttt{successor} for the first transition, and \texttt{successor} for the second. If these three schemes fail to refute the counterexample, the complete counterexample is considered, using the same routine as the second instance of INFINITE-STATE-CEGAR.

For the car steering example the following results are obtained when run on a Pentium 4, 1.4GHz. INFINITE-STATE-CEGAR-I considers three counterexamples, computes \texttt{successor} five times, and takes 185 seconds to verify that the car steering example is safe. INFINITE-STATE-CEGAR-II considers the same counterexamples but computes \texttt{successor} only three times, and finishes in 69 seconds. INFINITE-STATE-CEGAR-III considers only two counterexamples, and computes \texttt{successor} only once. Since, this particular successor was easy to compute, the overall time drops to 20 seconds.

5.5.2. MoBIES Adaptive Cruise Control System

The model that we use for the adaptive control experiments is based on a Simulink/Stateflow model [16]. The adaptive cruise control is part of a vehicle-to-vehicle coordination system. The part of this system that we consider comprises two modes: the cruise control mode (cc-mode) in which a car tries to keep a constant speed, and an adaptive cruise control mode (acc-mode), in which the car tries to stay a safe distance behind a vehicle ahead of it. The acc-controller switches into acc-mode whenever the distance between the car and a vehicle ahead falls below a certain threshold. This threshold depends linearly on car speed.

The system also includes an automatic transmission system with four gears. Depending on the speed of the car it will switch between the different gears. The hybrid automaton that models both the acc-controller and the automatic transmission has 8 locations for the normal operation and one additional state that is entered on collisions, when the distance between the cars is zero. Obviously, this is the location that should not be reachable. The model takes into account the distance between two cars, their relative velocity and the velocity of the following car. The differential equations that describe the continuous behavior are non-linear, mainly due to saturation; for each gear there are upper and lower bounds on the possible acceleration.

For the adaptive cruise control example the hybrid model checker CheckMate[29] is used as a baseline, since it is possible for this case study to generate a CheckMate model that exhibits the exact same behavior as our model\footnote{Note that other tools, such as HyTech [22], d/dt [4], and the Alur et al. tool [2] cannot handle this example as it contains non-linear dynamics.}.
CheckMate takes 728 seconds to verify that the system is safe. We compare this result to our two approaches INFINITE-STATE-CEGAR-II and INFINITE-STATE-CEGAR-III. INFINITE-STATE-CEGAR-II considers 46 counterexamples, and computes 11 times $\text{succ}_{\text{light}}$, in 495 seconds. The resulting safe abstraction has 29 states. INFINITE-STATE-CEGAR-III only considers 10 potential counterexamples, computes $\text{succ}_{\text{light}}$ just once, and takes only 43 seconds. The resulting abstraction has just 15 states. Five of the counterexamples have been refuted by considering single transitions; for example, when the following car is in first gear and in acc-mode, then it cannot collide with the leading car. All other counterexamples were refuted by considering segments of length 2. For example, one such refuted counterexample corresponds to the case when the car is in third gear and switches to acc-mode—this cannot lead to a collision.

6. Conclusions

This paper presents a new method for using counterexamples to refine abstractions of hybrid systems. The principal alternative for verifying the safety properties considered in this paper is to compute the reachable states for the hybrid system using a breadth-first application of the successor operator succ. It is apparent that the INFINITE-STATE-CEGAR procedure can be faster than breadth-first reachability when the safety property does not hold for the concrete system, since in this case it is possible for the model checker to quickly find a true counterexample. On the other hand, if the safety property holds, refuting one counterexample may implicitly refute others. However, the INFINITE-STATE-CEGAR procedure continues until all possible counterexamples have been explored (and indeed, may not terminate), which is in some cases equivalent to the breadth-first reachability computation. Nevertheless, we have shown here that INFINITE-STATE-CEGAR offers the possibility of using multiple methods for computing approximations to the successor states.

References

9. E.M. Clarke, E.A. Emerson, and A. Prasad Sistla. Automatic verification of finite state con-

Appendix A:

Proof of Lemma 1.
Proof. By contradiction: If $C \not\models \mathbf{AG} \neg B$, then at least one path $\sigma = (s_0, s_1, \ldots, b)$ with $b \in B$ must exist for C. From Defn. 2, it follows that the corresponding abstract counterexample $\hat{\sigma} = (\hat{s}_0, \hat{s}_1, \ldots, \hat{b})$ of A is a counterexample which contradicts the premise $A \models \mathbf{AG} \neg B$. \hfill \Box

Proof of Lemma 2.
Proof. (i) $A \succeq A'$. It follows straightforwardly that A is an abstract model of A' with abstraction function α^\prime as defined in Defn. 6.
(ii) $A' \succeq C$. From the above definitions of $A' = (\hat{S}', \hat{S}_0', \hat{E}')$ and α', it follows that A' would be an abstract model of C, if \hat{E}' also included the transition $(\hat{s}_1, \hat{z}_1^{\text{comp}})$. However, since S_2^{reach} and S_2^{comp} are disjoint, this abstract transition does not correspond to any concrete transition and can therefore be omitted. \hfill \Box

Proof of Lemma 3.
Proof. (i) $A \succeq A'$. The corresponding abstraction function is the identity. Since A has just an additional transition it is an abstract model of A'.
(ii) $A' \succeq C$. The abstraction function for this abstraction is α. We can then omit the abstract transition (\hat{s}_1, \hat{s}_2), since it does not correspond to any concrete transition. \hfill \Box

Proof of Lemma 4.
Proof. (i) If the algorithm terminates with “B reachable”, then the set of reachable states in the concrete model is non-empty along the path of the last checked counterexample. Formally, $S_0^{\text{reach}} \neq \emptyset$, $k = 0, \ldots, m$ due to the conditions in the IF statement ($S_k^{\text{reach}} \cap B \neq \emptyset$) and the WHILE statement ($S_k^{\text{reach}} \neq \emptyset$ AND $k < m$).

We can now show that the last checked counterexample in the algorithm is not spurious. To do so, we first show that for each k, all $s_k \in S_k^{\text{reach}}$ can be reached by paths in the concrete model. The proof is done by induction on k. For $k = 0$, each $s_0 \in S_0^{\text{reach}}$ can be reached by a path of length zero. For $k > 0$, for each $s_k \in S_k^{\text{reach}}$ there exists an $s_{k-1} \in S_{k-1}^{\text{reach}}$ such that $(s_{k-1}, s_k) \in E$ (by definition of the succe operator). By induction, s_{k-1} is reachable by some concrete path (s_0, \ldots, s_{k-1}), hence s_k is reachable via the concrete path (s_0, \ldots, s_k).

Since for each k, all $s_k \in S_k^{\text{reach}}$ can be reached by paths in the concrete model, there are paths (s_0, s_1, \ldots, s_m) with $s_m \in S_m^{\text{reach}} \cap B$. Each such path corresponds to a counterexample in the concrete model. Thus, $C \models \mathbf{AG} \neg B$.

(ii) If the algorithm terminates with “B not reachable”, then it was not possible to find any counterexample for the current abstract model A. But since A is in each step an abstraction of C we can conclude by Lemma 1 that $C \models \mathbf{AG} \neg B$ holds.

The proof of Lemma 5 follows similar lines and is therefore omitted. \hfill \Box

Proof of Lemma 6.
Proof. We show that α as defined in Defn. 11 is an abstraction function. The first condition in Defn. 2 follows directly from the definition of α. To show the second condition, it must be proved that

$\hat{E} = \{ (\hat{s}_i, \hat{s}_j) | (z_i, z_j) \in T \} \cup \{ (\hat{s}_0, \hat{s}_j) | (z_0, z_j) \in T \} \cup \{ (\hat{s}_i, \hat{s}_0) | (z_i, z_0) \in T \} \supseteq \{ (\hat{s}_i, \hat{s}_j) \in S : (s_i, s_j) \in E, \hat{s}_i = \alpha(s_i), \hat{s}_j = \alpha(s_j) \}$.

Assume $(s_i, s_j) \in E$, and $s_i = (z_i, x_i)$ and $s_j = (z_j, x_j)$ with $x_i, x_j \in X$ and $i, j \neq 0$. Then, it follows from the definition of E in Defn. 9 that $(z_i, z_j) \in T$. Thus, $(\hat{s}_i, \hat{s}_j) \in \hat{E}$.

The other cases ($i = 0$ or $j = 0$) can be shown in a similar way. \hfill \Box