SAT-Based Algorithmsfor Logic Minimization*

Samir Sapra

Michael Theobald

Edmund Clarke

Carnegie Mellon University
Pittsburgh, PA

Abstract

This paper introduces a new method for two-level logic
minimization. Unlike previous approaches, the new method
uses a SAT solver as an underlying engine. While the over-
all minimization strategy of the new method is based on the
operators as defined in ESPRESSO-11, our SAT-based im-
plementation is significantly different. The new minimizer
SAT-EsPRESSO was found to perform 5-20 times faster
than ESPRESSO-I1 and 3-5 times faster than BoomM on a
set of large examples.

1. Introduction

Two-level logic minimization is an important problem
of computer-aided digital design in several respects. While
its original motivation has been to provide efficient circuit
implementations of any logic function using just two levels
of logic gates, the problem now also plays a central role in
multi-level logic synthesis, state encoding, test generation,
and power estimation [5, 9]. In addition, the significance of
two-level logic minimization is not restricted to digital de-
sign; it has important applications, e.g. in reliability analy-
sisand artificia intelligence[4].

This paper presents a new algorithm for two-level logic
minimization that employs a satisfiability checker as an un-
derlying engine. A Boolean satisfiability (SAT) checker is
a program that checks whether a given Boolean formula
in CNF (conjunctive normal form) is satisfiable or not.
SAT is awell known NP-complete problem. However, in
practice, SAT checkers perform very well and are able to
solve ‘rea-world’ formulae containing hundreds of thou-
sands variables. The recent advancesin satisfiability check-
ers [10, 13, 16] have had a mgjor and positive impact on

*This research was supported by the National Science Foundation
(NSF) under grants no. CCR-0121547 and CCR-0098072, by the Army
Research Office (ARO) under contract no. DAAD19-01-1-0485, by the Of -
fice of Naval Research (ONR), the Naval Research Laboratory (NRL) un-
der contract no. N00014-01-1-0796, by the Semiconductor Research Cor-
poration (SRC) under contract no. 99-TJ-684. The views and conclusions
in this document are those of the authors and should not be interpreted
as representing the official policies, either expressed or implied, of ARO,
ONR, NRL, NSF, SRC, the U.S. Government or any other entity.

areas such as equival ence checking, processor verification,
and model checking[8, 3, 2].

To the best knowledge of the authors, this paper is the
first to present an approach to logic minimization that em-
ploys a SAT engine. We explore a SAT-based approach for
heuristic minimization. State-of-the-art heuristic minimiz-
ers like ESPRESSO-II [12, 1] are used world-wide. The
minimization strategies used by EsPReEssoO-11 almost al-
ways lead to near-minimum solutionsin practice. However,
for large problems (functionswith over 100 input variables)
ESPRESSO-I1 takes along time to execute. SAT checkers,
on the other hand, have recently become capable of han-
dling comparatively huge numbers of variables. We there-
fore try to combine the strengths of ESPRESSO-I1 (quality
of approximation) and SAT (speed on large problems) by
adopting the same basic strategies as ESPRESSO-1 | but per-
forming them efficiently by developing algorithms that use
— appropriately adapted — SAT checkers.

Our new minimizer SAT-ESPRESSO was found to per-
form 5-20 times faster than ESPRESSO-11 and 3-5 times
faster than BooM [6] on a set of large examples. BOOM is
arecently developed heuristic minimizer that specializesin
large examples.

The remainder of the paper is organized as follows. Sec-
tion 2 introduces background material. Section 3 gives
an overview of the new SAT-based method. Sections 4
through 6 introduce our new SAT-based algorithms for the
ESPRESSO-I| operators. Section 7 gives experimental re-
sults, and Section 8 gives conclusions.

2. Background

This section first reviews anumber of definitionsin logic
synthesis. Then, two-level logic minimization algorithms
are surveyed.

2.1. Basic Logic Synthesis Definitions

The following definitions are taken from Rudell [11],
and standard textbooks 5, 9] with small modifications[14].
Let B := {0,1} be the set of binary values. B™ can
be modeled as a binary n-cube, and each element e =

(e1,...,e,) € B" iscalled aminterm. Note that the well-
known binary Boolean algebrais given by the the set B to-
gether with the operations + (also called disjunction, sum,
OR) and - (conjunction, product, AND).

A Boolean function f of n variables, z1,... ,z,, isa
mapping f : B" — {0, 1, x}. Here, the symbol x denotesa
don’t care condition, i.e. the value of the function does not
matter. Note that a minterm (e, ... ,e,) indicates which
values are assigned to the variables of afunction,i.e. z; =
e1, Ty = eq, and soon.

The ON-set of aBoolean function f is defined as the set
of minterms for which the function has value 1. Similarly,
the OFF-set and DON’ T-CARE-set are defined as the sets
of minterms for which the function has value 0 and *, re-
spectively.

Boolean functions as defined above are often referred to
assingle-output Boolean functions. A multi-output Boolean
function is a mapping f : B" — {0,1,%}™. Note that
each of the output functions f+, ... , f,, hasitsown ON-set,
OFF-set, and DON'’ T-CARE-set associated with it. For the
sake of simplicity of presentation, only single-output func-
tions are considered in the remainder of this section. The
presented agorithms in this paper can handle multi-output
functions.

Each variable z; has two literals associated with it:
an uncomplemented (or positive) literal z;, and a comple-
mented (or negative) literal Z; or x;. The litera z; (%;)
represents a Boolean function which evaluates to 1 (0) for
minterms with e; = 1, and to 0 (1) for minterms with
€; = 0.

A product term is a Boolean product (AND) of liter-
als. That is, a product evaluates to 1 for a minterm e, if
each literal included in the product evaluates to 1 for the
minterm e. Otherwise, the product evaluates to 0. In the
former case, the product is said to contain minterm e. Note
that each minterm corresponds to a product that only con-
tains the given minterm. More specifically, the minterm
e = (e,...,ey,) corresponds to the product z{* - - -z,
where z7* denotes the positive (negative) literal of x; if
e; = 1(0). For example, the minterm e = (1,0,1) cor-
responds to the product z,Z3x3, which is often used as a
convenient abbreviation. Since a product corresponds to a
set of adjacent minterms in the binary n-cube, a product is
also referred to as a cube.

A cube « is contained in a cube 8 (o C p) if each
minterm containedin « isalso containedin 3. Theintersec-
tion of cubes « and 3 (a N B) is the uniquely defined cube
which contains those minterms contained in both cubes.
The supercube of cubes o and 3, denoted supercube(a, 3),
is the uniquely defined smallest cube that contains both
cubes. For example, if a = 172, and 8 = T1Z>x3, then
supercube(a, 5) = T3. Ingeneral, to compute the supercube
each literal must be considered. A literal isincluded in the
supercube of two cubes if and only if it isincluded in both
cubes. The supercube of a set of cubesis defined similarly.

A sum-of-products is a Boolean sum (OR) of prod-
ucts. That is, a sum-of-products evaluates to 1 for a given
minterm if some product contains the minterm.

Animplicant of a Boolean functionisacubewhich con-
tains no minterm in the OFF-set. A prime implicant isan
implicant contained in no other implicant of the function.
Anessential primeimplicant isaprimeimplicant contain-
ing at least one ON-set minterm which is not contained in
any other prime implicant.

A cover of a Boolean function is a set of implicantsin-
terpreted as a sum-of -products, which evaluates to 1 for all
the minterms of the ON-set, and none of the OFF-set. We
use the term prime cover to refer to acover containing only
primeimplicants.

_ The complement of aBoolean function f is denoted by
f,or f',and evaluatesto 1 (0) if f evaluatesto O (1).

2.2. Two-Level Logic Minimization

The two-level logic minimization problem is to find a
cover for f that minimizes a given cost function. In digital
design, such a cover can be implemented as a minimum-
cost sum-of-products (two-level) circuit. Here, the cost, or
size, of a cover is often defined as the number of cubesin
the cover. (Another popular cost function is the number of
literals.)

The classic QUINE-McCLUSKEY agorithm [7, 11] to
solve the exact two-level minimization problem is based on
theinsight that the implicants in a minimum-cost cover can
be restricted to prime implicants. The algorithm consists of
two steps: (i) generate the set of all prime implicants; and
(¢i) select aminimum number of primeimplicants such that
each ON-set minterm is contained.

SCHERZzO [4] is currently the state-of-the-art exact two-
level logic minimization agorithm. Using implicit mini-
mization techniques, i.e. using data structures (BDDs and
ZBDDs) that facilitate the manipulation of a large number
of objects simultaneously, SCHERZO is 10 to more than 100
times faster than the best previous minimization methods.

Since solving the exact two-level logic minimiza-
tion problem involves computationally intractable prob-
lems, heuristic approaches have been developed as well.
EsPrRESSO-11 [12, 1] isthe state-of-the-art tool for heuristic
two-level logic minimization. The output of ESPRESSO-I |
isacover, whichin practiceisamost always near-minimum
in cardinality. Thetool is very efficient and is used world-
wide. Recently, an aternative tool, called Boom [6], that
particularly addresses large problems has been introduced.

3. Heuristic Minimization Using SAT Checkers

Solving the two-level logic minimization problem can
be computationally expensive. Hence, heuristic tools like
EsPRESSO-I1 have been developed as powerful practical
aternatives. While ESPRESSO-11 almost always produces
near-minimum solutions in practice, it takes a long time to
solve large problems.

Our aim is to achieve high-quality approximations effi-
ciently for large problems. We combine the strengths of
EsPRESsO-11 (quality of approximation) and SAT solvers
(speed on large problems) by adopting the same basic strate-
giesas ESPRESSO-11 but by performing them efficiently us-
ing SAT-based agorithms.

ESPRESSO-1I’s strategies are implemented by various
procedures called ‘ operators . The mgjor ESPRESSO-I11 op-
erators are called EXPAND, IRREDUNDANT, REDUCE
and ESSENTIALS (these are described in more detail in
the following sub-section). ESPRESSO-II’s run-time pro-
file was analyzed for some large examples, taken from a
recently-published benchmark suite [6]. Our analysis indi-
cated that the major bottlenecks were REDUCE, ESSEN-
TIALS and IRREDUNDANT (in that order). For the con-
sidered examples, the EXPAND operator was not a bottle-
neck and executed quickly even on large exampleswith 200
variables. Accordingly, our efforts were focused on devel-
oping SAT-based algorithms for the other three operators.

Intheremainder of this section, we begin by giving back-
ground on ESPRESSO-11, since its basic minimization strat-
egy is similar to the one that we use. We then develop SAT-
based algorithms to implement the IRREDUNDANT, RE-
DUCE and ESSENTIALS operators.

3.1. Background on Espresso-I1

EsSPRESSO-11, developed in the early 1980s, is a very
powerful tool for heuristic two-level logic minimization.
Thetool has been very successful, and the underlying ideas
have also inspired tools for other domains, e.g. for a vari-
ety of problemsin logic design [9] and asynchronous logic
synthesis[15].

The input to ESPRESSO- I is the Boolean function to be
minimized, specified in terms of its ON-set, OFF-set, and
DON’' T-CARE-set. Two of these sets are actually sufficient
as the three sets partition B"™. Each of the setsis specified
in terms of an arbitrary set of implicants (e.g. al contained
minterms, or possibly larger cubes), denoted FON, FOFF
and FP¢, respectively. The set of implicants FON repre-
sents an initial unoptimized cover, or solution. The output
of ESPRESSO-I11 is a cover, which is in practice almost a-
ways near-minimum in cardinality.

EsPrRESsO-11 iteratively refines the cover by applying
three operators in its main loop. This iteration continues
until no further improvement is possible: (i) EXPAND en-
larges each implicant of the current cover, in turn, into a
prime implicant. (ii) IRREDUNDANT makes the current
cover irredundant by deleting a maximal number of redun-
dant implicants from the cover. (iii) REDUCE sets up a
cover that islikely to be made smaller by the following EX-
PAND step. To achieve this goal, each cube in the current
cover is maximally reduced, in turn, to a smaller cube such
that the resulting set of cubesis still acover.

ESPRESSO-11 also employsadditional operators, such as
ESSENTIALS and LAST_GASP, which can be quite pow-

erful. ESSENTIALS is used to identify all essential prime
implicants before the main loop is entered, in order to sim-
plify the covering problem. LAST _GASP is applied after
the main loop is exited, to try to escape a suboptimal local
minimum,; if successful the main loop is entered again.

One key reason for the efficiency of ESPRESSO-II is
the so-called unate recursive paradigm, i.e., to decompose
operations recursively leading to efficiently solvable sub-
operations on unate functions (i.e. functions that are unate
inall of their variables). A functionisunatein a variableif
changing the value of that variable from 0 to 1 either never
changes the function’s value from 0 to 1 or never changes
the function’s value from 1 to 0. A function would not be
unate in a variable if changing the value of that variable
from 0 to 1 sometimes changed the function’s value from 0
to 1 and sometimes changed it from 1 to O depending on the
values of the remaining variables.

4. Reduce

This section presents new SAT-based implementations
of the REDUCE operator. In particular, we describe three
methods in order of increasing performance advantage over
the operator implementation in ESPRESSO-I1. Our best
implementation outperforms ESPRESSO-11’s REDUCE by
more than afactor of 100 on many of our large examples.

The purpose of the REDUCE operator is to modify the
current cover so that its cardinality may be improved by
the following EXPAND. Each implicant in a given cover
is maximally reduced in size, i.e. reduced to the smallest
cube such that the resulting set of implicantsis till acover.
The end result of REDUCE depends on the order in which
implicants are processed. Various heuristics have been de-
veloped to sort a cover before reducing its implicants. In
EsPrReEssO-I1, implicants are weighted and then sorted in
descending order of weight so as to first process those that
are large and overlap many other implicants. Our imple-
mentation reuses the heuristics adopted by ESPRESSO-I1.

4.1. Method 1:

Let us now consider how to compute a maximally re-
duced cube. We are given a (sorted) cover F' and an impli-
canta € F'. Reducing a to the cube a resultsin anew set of
cubesG = (F—{a})U{a}. Thegoa istofind the smallest
cube & that makes G a cover. Any a that makes G a cover
must contain all of the ON-set minterms of « that are not
contained in any other implicant of F'. The smallest & that
containsall of these mintermsissimply their supercube (by
definition).

Equivalently, we are looking for the supercube of all sat-
isfying assignments of the following formula:

o HB-() 7) ®
BeEF YEFON
B#a

MAXIMALLY-REDUCE-SIMPLE (a, F, FON)
1{
2 &« TOCNF (Z,YEFON v)

3 ‘I’(—Ow(HngB)-(I)

BFa
S+ 0
while (SAT_CHECK (¥, & assignment) = SATISFIABLE)

{

6
7 S+ SUassignment
8 U+ VU-assignment

(S 1

©

10
11}

return SUPERCUBE(S);

MAXIMALLY-REDUCE-FAST (a, F, FON)
14
2 &« TOCNF (Zvepow v)

U a- (HBEFB> - P
BF#a

w

a+ 0
while (SAT_CHECK (¥, & assignment) = SATISFIABLE)
{

& < SUPERCUBE(@, assignment)

U T.qf

O©oo~NOO1h

10 returnc;
11}

Figure 1. Maximally-Reduce-Simple

In Formula (1), « is the cube to be reduced, F' denotes
the current cover, and F'“" denotes the given ON-set. The
formulacharacterizes minterms that must beincluded in the
reduced cube. Each such minterm (i) must be covered by «,
(if) must not be covered by any other cube 3 of the current
cover F', and (iii) must be in the ON-set of the function.

Formula (1) will be fed to a SAT checker. To do so, the

part of the formula (Zve FON 7) must be converted into

CNF (conjunctive normal form).

To performthisconversion, wefirst introduceanew vari-
able v, for each product + in the sum-of-products. Then,
for each v, we express (v, < 7) in clause form. Fi-
naly, all the clauses so obtained are ANDed together with

(ZWGFON UW) :

For example, if ¥ = ab + be, then we introduce the
variablesv,;, and v, and form ¥ ¢ n as follows:

Uonr = (vab +v5,) - (Vap ¢ ab) - (vg, ¢ be)
= (vap +v5,) - (Vab + @+ b)(Vap + @) (Vap + b)
(g, + b +2) (T, +b) (T3, +)

Uonp iShot equivalent to W, but is satisfiable if and only
if ¥issatisfiable.

As an optimization, from the summation part of For-
mula (1), we can exclude those «y that are digoint from «.
Disjointness of implicants can be computed efficiently us-
ing bitwise operators.

Finally, it remainsto be ensured that o does not intersect
the OFF-set. This follows from the fact that the smallest
cube that contains a set of minterms (i.e. their supercube)
is a subset of any other cube that contains those minterms.
Thus, & is guaranteed to be a subset of «, which itself does
not intersect the OFF-set.

EsPRESSO-11 computes maximally reduced cubes by
using the aforementioned unate recursive paradigm (Sec-
tion 3.1).

Figure 2. Maximally-Reduce-Fast

In contrast, our method is based on SAT-solving. For-
mula (1) suggests one simple approach — find all the sat-
isfying assignments of (1) using a SAT checker, and then
compute their supercube

This approach, called MAXIMALLY-REDUCE-SIMPLE,
isshown in Figure 1. The function SAT _CHECK() takes a
CNF formulaas its first parameter and determines whether
itis SATISFIABLE. If so, asatisfying assignment is returned
by modifying the second parameter (passed-by-pointer).
The function SUPERCUBE computes and returns the super-
cube of its argument cubes.

In each iteration of thewhileloop, it isdeterminedif ¥ is
satisfiable. If it is, then a satisfying assignment is returned
viaassignment, ¥ ismodified to ‘block’ out assignment
(line 8), and assignment is added to the collection S of
assignments found so far (line 7). Continuing in this way,
eventualy al satisfying assignments are found, and their
supercube is computed and returned in line 10.

4.2. Method 2:

A modified version can befound that is often much faster
than Method 1. The modified agorithm MAXIMALLY-
REDUCE-FAST (Figure 2) maintains a ‘running total’ su-
percube a of al the assignments found so far, rather than
the set of satisfying assignments that has been discovered.
Each time a satisfying assignment is found in the while loop
of lines 5-9, Method 2 updates the supercube o and then
blocks out the updated supercube & from ¥. Thisisin con-
trast to Method 1, which updatesthe collection S and blocks
out each individual assignment (lines 7 and 8). In the end
the agorithm simply returns the running total so far.

Intuitively, the modified agorithm limits the number of
satisfying assignments that need to be found. In each iter-
ation an assignment is found that differs from the running
total in at least oneliteral. Therefore, each iteration extends
the running total in at least one more dimension. Hence, if
the reduced cube has & dimensions, the maximum number

of satisfying assignments that need to be foundis k. (Obvi-
oudly, it can be as few as two assignments in the best case,
if the two "opposite corners’ of the final reduced cube are
the first two assignments that are found. In fact, ordering
heuristics can be geared toward such cases.)

4.3. Method 3:

It is possible to further speed up the algorithm just dis-
cussed. The improved algorithm MAXIMALLY-REDUCE-
FASTER, shownin Figure 3, isthe one that was actually im-
plemented. Unlike the algorithm in Figure 2, the improved
algorithm does not make multiple calls to SAT CHECK,
obtaining satisfying assignments one at a time. Instead,
it makes a single call to a modified SAT checker NEw-
SAT_CHECK, which computes all the solutions of ¥ and
returnstheir ‘running total’ supercube.

Before explaining NEw-SAT _CHECK, we first briefly
review how state-of-the-art SAT checkers work. To deter-
mine the satisfiability of a given propositional Boolean for-
mulaonn variables (¥ in our case), SAT checkers perform
a sophisticated backtracking search of the Boolean space
B™. During the search process, the SAT engine maintains
a partia assignment, which is constructed a few variables
at atime in the hope of finding a satisfying assignment (or
a proof of unsatisfiability). While constructing the assign-
ment, conflicts may be discovered, i.e. situations where the
entire subcube represented by a partial assignment has been
unsuccessfully searched without finding a satisfying assign-
ment. In that case, the search backtracks. Modern SAT
checkers implement a learning mechanismfor conflicts - a
clause is added to the original formula so that the same un-
successful situation is not repeated.

Our modified SAT checker mainly differs in its behav-
ior when finding a satisfying assignment. Unlike the orig-
inal SAT_CHECK, NEW-SAT_CHECK does not immedi-
ately terminate when a satisfying instanceis found. Instead,
it treats this situation as a conflict - re-using zChaff’s (the
employed SAT engine) own internal functions. The result-
ing state of the search is as though we had started out with
the found assignment blocked out. In particular, first, the
formula being tested is adjusted and then the backtracking
searchisresumed, either continuing at the appropriate depth
blevel in the search tree, or stopping if blevel turns out to
be the root level of the search treeindicating that the search
space has been exhausted. Note that the search tree is not
maintained explicitly but istraversed implicitly.

One major advantage of using NEw-SAT _CHECK isthat
it allows us to avoid repeatedly restarting the backtracking
search from scratch. This not only leads to a more effi-
cient algorithm but also trandates into an implementation
efficiency — we no longer need to repeatedly set up and
tear down the state needed by SAT _CHECK. Thus, alot of
redundant work is eliminated.

Note that the new algorithm makes the same adjustments
to the formula ¥ and supercube & as does the previous al-

MAXIMALLY-REDUCE-FASTER (o, F, FON)

{
& « TOCNF (Z%FON 7)

N o

a+ 0

NEW-SAT_CHECK (¥, & @)

/* NEw-SAT_CHECK always returns UNSATISFIABLE */

return a;

}

Inside the SAT engine, whenever a satisfying assignment ¢
isfound:

& < SUPERCUBE(&, ¢)

U+ VT-af

blevel = DETERMINE-BACKTRACK-LEVEL()
BACKTRACK (blevel);

if (CURRENT-LEVEL () <= ROOT_LEVEL)

[* search space is exhausted; return from SAT engine */
return UNSATISFIABLE

}

Figure 3. Maximally-Reduce-Faster

gorithm (Method 2). The mgjor differenceisthat in the new
algorithm, the adjustments are made by the SAT checker,
whereas in the previous algorithm they were made by the
calling function.

5. Irredundant

The IRREDUNDANT operator takes a cover produced
by EXPAND and tries to reduce its cardinality to a local
minimum. ESPRESSO-11's IRREDUNDANT operator sets
up and solves an optimization problemto find alargest sub-
set of implicants that can be removed from the given cover
without making it invalid.

Currently, our implementation uses a simple-minded al-
gorithm where we test each implicant « in a cover F' for
relative essentiality, i.e. if it contains an ON-set minterm of
f that is not contained in any other implicant of F'. Each
implicant that is not relatively essential is immediately re-
moved from F'. Thisalgorithm does produce an irredundant
cover, but the resulting quality may be suboptimal. In prac-
tice, we observed that this suboptimality is aimost aways
negligible, and does not negatively influence the outcome
of the logic minimization algorithm.

In our algorithm, SAT isemployed in thetest for relative
essentiality. For a € F to berelatively essential, there must

exist a witness ON-set minterm that is contained in a but
not in any other implicant of F'. Hence, Formula (1), pre-
sented in the previous section, can be used to test if acubeis
relatively essential. The formulais satisfiable for a cube «
if and only if « isrelatively essential. Note that in contrast
to the previous section, it is not necessary to seek morethan
one satisfying assignment of the formula.

6. Essentials

The ESSENTIALS operator is intended to simplify the
minimization problem. Essentia prime implicants must be
present in any prime cover of the given function. There-
fore, they should be identified at the outset so that the sub-
sequent main loop of ESPRESSO-II only has to deal with
non-essential primes.

A primeimplicant o of afunction f is essential if there
exists at least one witness ON-set minterm that is contained
in « but not in any other prime implicant of f. Conse-
guently, to compute the essentials of a function, it is suffi-
cient to computetheir witnesses. To get the actual essentials
given the witnesses, we can use the EXPAND operator on
each witness.

6.1. Characterization of Witnesses

We now derive some facts, which will help to identify
witnesses (f denotes a given Boolean function). Let e =
l115 .. .1, beaminterm, then there are n minterms adjacent
toit, each of which is obtained by negating one literal ine:

Lils .. .1y, Lia ... 1y, lily...l,
Let Adj(e) denote the set of minterms adjacent to e. Then,

we define:

Adi°N(e) = Adj(e) N ON-set(f)
(i.e. ON-set minterms adjacent to e)
AdjP% () = Adj(e) N DC-set(f)
(i.e. DC-set minterms adjacent to e)
Adi°TF(e) = Adj(e) N OFF-set(f)

(i.e. OFF-set minterms adjacent to e)

It holds that Adj%N(e), Adj”(e)and AdjOTF (e)
are pairwise digoint; and Adj9N(e) U AdjiP%(e) U
AdjOTF (e) = Adj(e).

Given a cube «, we also define Adj 1} (e) to be the set
of al minterms contained in « that are adjacent to e. In this
section, we denote the (uniquely defined) supercube of a set
S of minterms by supercube(.S).

Fact 6.1 If o isa Boolean k-cube, and e isamintermin «,
thenit holds e = supercube({e} U Adjiot(e))

Since a has k dimensions, thereare &k mintermsin « that are
adjacent to e (i.e. |Adj{®}(e)| = k). Since the supercube
under consideration must contain e and all of these k adja
cent minterms, it itself must have dimensionality of at least
k. Infact, since « has k dimensions, the supercube must
aso have exactly k dimensions (by definition). Further, for
the supercube to be uniquely defined, we must have that o
is the supercube.

Fact 6.2 Given an ON-set minterme and a prime implicant
« containing it, e is a witness of essentiality (with « its es-
sential prime) if and only if all minterms in Adj©N (e) U
AdjPC (e) are contained in a.

(‘only if’): Assume there is an e/ € Adj9N(e) U
AdjPC (e) that is not contained in . Then since e and
e’ are adjacent, they form a binary cube. Further, neither
mintermisin the OFF-set. Hence, the set {e, e’} represents
an implicant, which we will denote as 3 for brevity. Let 5’
be a prime implicant containing 3. Then 3’ contains both e
and e'. But this means 8’ is a prime implicant that contains
e but is distinct from « (« does not contain e’ by assump-
tion). Hence, e is not awitness and « is not an essential.

(‘if’): Assume al mintermsin Adj9N (e) U AdjPC (e)
are contained in a. Then we must have that Adj ©N (e) U
AdjPC(e) C Adji*}(e). Now let 8 be an arbitrary
prime implicant containing e. Since [cannot intersect
the OFF-set, every minterm in 8 must be either an ON-
set minterm or a DC-set minterm. This implies that
Adj{Pt(e) C AdjON (e)U AdjPC (e). Hence we must have
that Adji%}(e) C Adjlot(e). Thisinturn meansthat

B = supercube({e} U Adji5}(e)) (Fact 6.1)
C supercube({e} U Adji®}(e))
= «a
Thus, 3 C «. But since g is aso a prime implicant

and hence cannot be contained in any other implicant, this
meansthat 3 = a. Therefore, thereis exactly oneprimeim-
plicant that contains e. Thus, e is a witness to essentiality
and « is an essentia prime, which completes the proof.

Fact 6.3 An ON-set minterme is a witness of essentiality if
and only if supercube({e} U AdjON (e) U AdjPC (e)) does
not intersect the OFF-set.

If supercube({e} U Adj9N (e) U AdjPC (e)) does not in-
tersect the OFF-set, then it is an implicant which contains
al minterms in Adj°N (e) U AdjP¢(e). The cube is a
prime implicant as expanding it in any additional direc-
tion would include one minterm from Adj ©¥'7 (e) and thus
overlap the OFF-set. Hence, e is a witness of essentiality
(Fact 6.2). If supercube({e} U Adj®N (e) U AdjPC (e)) in-
tersects the OFF-set, no implicant can be found to contain
al mintermsin AdjN (e) U AdjP (e). Hence, e is not a
witness (Fact 6.2).

6.2. SAT-Formula for Witnesses

Fact 6.3 suggests a procedure, given below, for decid-
ing whether a minterm e is a witness. First, we adopt the
following notation:

e Let f! : B* — B denote the Boolean function that
evaluatesto 1 for all ON-set mintermsand O otherwise.
We express f* by theformula " ron 7.

e Let f1* : B — B denote the Boolean function that
evaluates to O for all OFF-set minterms and 1 other-
wise. We express f'* by theformulaHBeFOFF s.

Procedure for deciding whether a given minterm e¢ =
(I1,1s, ... ,1,) isawitness:

1. Ensurethat f!(e) = 1. If not, e is not awitness.

2. Foreachiinl...n: _
Letei = (l1,127"' 7li717 li, li+1,"' 7ln)
Letp; =1if fl*(ei) = 0; otherwiselet p; = 0.

3. Compute supercube of e with al e; for which p; = 0,
i.e. fl*(ei) =1.

4. 1f this supercube does not intersect the OFF-set, then e
isawitness. Otherwise, e is not awitness.

We can ‘program’ the above procedure into a
single Boolean formula over the 2n variables
ll,lQ, ,ln,pl,pQ, ey Pn Here, the p-variabI%
are implied variables, and the formula is satisfiable for a
minterm e = (I3, lo, ..., I,,) if and only if e is a witness
to an essentia prime implicant:

fl(l1,127"' 7ln) (2)
e, [E(—) FoU by licn, Doy Ly . ,ln)] ?)
;*(llalQr-' 7ln7p17p27~-~ 7pn) (4)

Subformula (2) ‘performs Step 1 of the procedure out-
lined above; subformula (3) performs Step 2; and subfor-
mula (4) combines Steps 3 and 4. The formula for f}*
is constructed by taking the formula for f1*, and then re-
placing each occurrence of the literal ; with p;z; and each
occurrence of the literal z; with p;z;. Intuitively, the super-
cube must not intersect the OFF-set. That is, for each cube
B € FOFF the supercube must contain one literal whose
negated literal is contained in 3. The latter can be reformu-
lated for awitness. The witness must contain one literal (i)
whose negated literal is contained in 8 and (i) which does
not correspond to aliteral that is removed by the supercube
operation, i.e. for which p; is0. f1* negates each OFF-set
cube 3 obtaining a CNF clause which guarantees (i), and (ii)
is established by using the p-variables to mask out literals
which are not included in the supercube.

Name [EsPResso-1I | Boom | SAT-ESPRESSO |

50/100 17.79 8.48 3.04
50/150 48.40 3157 6.69
50/200 138.55 109.03 23.13
100/50 9.23 0.63 311
100/200 1198.20 165.83 64.16
150/100 175.43 13.66 16.59
150/200 1320.30 | 121221 260.36
200/50 18.44 10.63 312
200/100 204.49 30.40 22.15
200/150 1265.68 186.52 56.05
200/200 2178.11 | 2626.39 134.19

Table 1. Run-time comparison (in sec)

The entire formula can be converted to CNF using the
technique described in Section 4.2.

As an optimization, one can compute an over-
approximation S to the set of essential primes, and
then constrain the above formula to represent only those
minterms that are contained in S. The over-approximation
S can be computed by taking any two covers of the given
function and computing their intersection. The two covers
are obtained by using EXPAND with different heuristicsfor
expanding cubes. In practice, this optimization was very
useful because in al of the examples we tested, our over-
approximation S turned out to be the empty set, indicat-
ing that no essentials are present, constraining the formula
to FALSE, and thus alowing us to skip the SAT checking
phase entirely.

7. Experimental Results

Table 1 compares the overal run-times of SAT-
ESPRESSO with ESPRESSO-11 and Boom on a recently
published benchmark suite [6]. BOoM is a recently devel-
oped heuristic minimizer that specializesin large examples.
SAT-EsPRESSO wasfound to betypically 5-20 times faster
than ESPRESSO-I1 and 3-5 times faster than Boowm.

Table 2 compares per-operator run-times of SAT-
EsPRESSO with ESPRESSO-I11 for the operators REDUCE,
ESSENTIALS and IRREDUNDANT. Here, we observed
speed-ups of one to two orders of magnitude (REDUCE:
16-400 times;, ESSENTIALS: 37-270 times; IRREDUN-
DANT: 7-110 times).

Note that SAT-ESPRESSO uses the same overall strat-
egy as ESPRESSO-11, and thus obtains the same resulting
covers. Hence, the tables in this section primarily focus on
run-time.

EsSPRESSO-11 and SAT-ESPRESSO both iterate until no
further improvement of the cover can be achieved. In con-
trast, BooM iterates until the cover satisfies a given cri-
teria, e.g. the number of literals is smaller than a given
bound. Hence, we ran Boom after ESPRESSO-I1 and SAT-
ESPRESSO, using the obtained number of literalsfrom these
runs as the bound to be achieved by Boowm for termination.

In SAT-ESPRESSO, we use as SAT checker a modified

ESSENTIALS IRREDUNDANT REDUCE

Name

(ilp) ESPRESSO-II | SAT-ESPRESSO | Factor ESPRESSO-II | SAT-ESPRESSO | Factor ESPRESSO-Il | SAT-ESPRESSO | Factor
50/100 4.86 0.08 60.75 2.99 0.38 7.87 7.77 0.39 19.92
50/150 15.32 0.22 69.64 6.08 0.69 8.81 21.97 0.74 29.69
50/200 35.28 0.37 95.35 18.64 1.40 13.31 65.00 1.68 38.69
100/50 2.65 0.07 37.86 111 0.16 6.94 2.68 0.17 15.76
100/200 212.70 1.10 | 193.36 134.17 212 63.29 793.85 3.64 | 218.09
150/100 31.10 0.46 67.61 20.39 0.72 28.32 109.63 118 92.91
150/200 511.33 187 | 27344 103.75 0.95 | 109.21 4438.51 120 | 373.76
200/50 6.67 0.18 37.06 2.35 0.26 9.04 7.11 0.32 2222
200/100 84.44 0.64 | 131.94 14.88 0.56 26.57 84.65 0.74 | 114.39
200/150 251.70 147 | 171.22 94.92 182 52.15 869.72 3.79 | 229.48
200/200 567.99 2.84 | 200.00 183.58 1.70 | 107.99 1301.07 3.27 | 397.88

Table 2. Time spentin operators ESSENTIALS, IRREDUNDANT and REDUCE. i/p-number of inputs/number

implicantsin theinitial cover. All functions have 5 outputs.

version of zChaff [10]. Our implementation involves a lot
of redundant file 1/0, so there is room for improvement re-
garding the performance.

EsSPRESSO-11 and SAT-ESPRESSO were run on a Dell
OptiPlex GX300 workstation using a 733MHz Intel Pen-
tium Il processor, 512MB system memory and the Linux
operating system. Boom was run on a Dell OptiPlex GX1
500 MTbr+ workstation using a 500MHz Pentium I11 pro-
cessor, 512MB system memory and the Windows 2000 op-
erating system. This arrangement was due to the fact that
Boom was only available for Windows whereas zChaff (the
SAT checker used) was not. To estimate the difference due
to workstation type, ESPRESSO-I1 was aso run on both
platforms for seven of the examples with an observed av-
erage speed-up from Windowsto Linux of 1.46 + 0.15.

All considered exampleswere taken from arecently pub-
lished benchmark set of large examples [6]. However, it
turns out that this benchmark set shows some unexpected
unifying behavior: the examplesdo not have essential prime
implicants and the IRREDUNDANT operator never suc-
ceeds. For these reasons, further experimentation with other
sets of large benchmarkswill be necessary to better evaluate
our new algorithms.

8. Conclusions

We have presented an approach to efficiently achieve
high-quality approximations on large two-level logic
minimization problems, by combining the strengths of
EsPrESsO-11 (quality of approximation) and SAT checkers
(speed on large problems). Preliminary experiments show
significant reductions in run-time when compared to other
minimizers.

References

[1] R. Brayton, G. Hachtel, C. McMullen, and A. Sangiovanni-
Vincentelli. Logic Minimization Algorithms for VLS Syn-
thesis. Kluwer Academic, 1984.

(2]
(3]

(4]
(5]
(6]

(7]
(8]

(9]

[10]

[11]

[12]

[13]

[14]

[19]

[16]

E. Clarke, O. Grumberg, and D. Peled. Model Checking.
MIT Press, 1999.

E. M. Clarke, P. Chauhan, S. Sapra, J. Kukula, H. Veith,
and D. Wang. Automated abstraction refinement for model
checking large state spaces using sat based conflict analysis.
In FMCAD, pages 33-51, 2002.

O. Coudert. Two-level logic minimization: an overview. In-
tegration, the VLS journal, 17:97-140, 1994.

S. Devadas, A. Ghosh, and K. Keutzer. Logic Synthesis.
McGraw-Hill, 1994.

J. Hlavicka and P. Fiser. BOOM - a heuristic boolean mini-
mizer. In Proc. International Conf. Computer-Aided Design
(ICCAD), pages 439442, 2001.

E. McCluskey. Logic Design Principles. Prentice-Hall,
1986.

K. L. McMillan. Applying sat methods in unbounded sym-
bolic model checking. In Proc. Computer Aided \erification,
pages 250264, 2002.

G. D. Michéli. Synthesis And Optimization Of Digital Cir-
cuits. McGraw-Hill, 1994.

M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and
S. Mdlik. Chaff: Engineering an efficient sat solver. In Proc.
ACM/IEEE Design Automation Conference, pages 530-535,
2001.

R. Rudell. Logic synthesisfor VLS| design. Technical Re-
port UCB/ERL M89/49, Berkeley, 1989.

R. Rudell and A. Sangiovanni-Vincentelli. Multiple valued
minimization for PLA optimization. |EEE Transactions on
CAD, CAD-6(5):727-750, September 1987.

J. P M. Silvaand K. A. Sakallah. Grasp: A new search al-
gorithm for satisfiability. Technical Report CSE-TR-292-96,
Computer Science and Engineering Division, Department of
EECS, Univ. of Michigan, 1996.

M. Theobald. Efficient Algorithms for the Design of Asyn-
chronous Control Circuits. PhD thesis, Department of Com-
puter Science, Columbia University, 2002.

M. Theobald and S. M. Nowick. Fast heuristic and exact al-
gorithmsfor two-level hazard-freelogic minimization. |EEE
Transactions on Computer-Aided Design, Nov. 1998.

H. Zhang. Sato: An efficient propositional prover. In
Proceedings of the Conference on Automated Deduction
(CADFE' 97), pages 272-275, 1997.

