
SAT-Based Algorithms for Logic Minimization�

Samir Sapra Michael Theobald Edmund Clarke

Carnegie Mellon University
Pittsburgh, PA

Abstract

This paper introduces a new method for two-level logic
minimization. Unlike previous approaches, the new method
uses a SAT solver as an underlying engine. While the over-
all minimization strategy of the new method is based on the
operators as defined in ESPRESSO-II, our SAT-based im-
plementation is significantly different. The new minimizer
SAT-ESPRESSO was found to perform 5–20 times faster
than ESPRESSO-II and 3–5 times faster than BOOM on a
set of large examples.

1. Introduction

Two-level logic minimization is an important problem
of computer-aided digital design in several respects. While
its original motivation has been to provide efficient circuit
implementations of any logic function using just two levels
of logic gates, the problem now also plays a central role in
multi-level logic synthesis, state encoding, test generation,
and power estimation [5, 9]. In addition, the significance of
two-level logic minimization is not restricted to digital de-
sign; it has important applications, e.g. in reliability analy-
sis and artificial intelligence [4].

This paper presents a new algorithm for two-level logic
minimization that employs a satisfiability checker as an un-
derlying engine. A Boolean satisfiability (SAT) checker is
a program that checks whether a given Boolean formula
in CNF (conjunctive normal form) is satisfiable or not.
SAT is a well known NP-complete problem. However, in
practice, SAT checkers perform very well and are able to
solve ‘real-world’ formulae containing hundreds of thou-
sands variables. The recent advances in satisfiability check-
ers [10, 13, 16] have had a major and positive impact on

�This research was supported by the National Science Foundation
(NSF) under grants no. CCR-0121547 and CCR-0098072, by the Army
Research Office (ARO) under contract no. DAAD19-01-1-0485, by the Of-
fice of Naval Research (ONR), the Naval Research Laboratory (NRL) un-
der contract no. N00014-01-1-0796, by the Semiconductor Research Cor-
poration (SRC) under contract no. 99-TJ-684. The views and conclusions
in this document are those of the authors and should not be interpreted
as representing the official policies, either expressed or implied, of ARO,
ONR, NRL, NSF, SRC, the U.S. Government or any other entity.

areas such as equivalence checking, processor verification,
and model checking [8, 3, 2].

To the best knowledge of the authors, this paper is the
first to present an approach to logic minimization that em-
ploys a SAT engine. We explore a SAT-based approach for
heuristic minimization. State-of-the-art heuristic minimiz-
ers like ESPRESSO-II [12, 1] are used world-wide. The
minimization strategies used by ESPRESSO-II almost al-
ways lead to near-minimum solutions in practice. However,
for large problems (functions with over 100 input variables)
ESPRESSO-II takes a long time to execute. SAT checkers,
on the other hand, have recently become capable of han-
dling comparatively huge numbers of variables. We there-
fore try to combine the strengths of ESPRESSO-II (quality
of approximation) and SAT (speed on large problems) by
adopting the same basic strategies as ESPRESSO-II but per-
forming them efficiently by developing algorithms that use
– appropriately adapted – SAT checkers.

Our new minimizer SAT-ESPRESSO was found to per-
form 5–20 times faster than ESPRESSO-II and 3–5 times
faster than BOOM [6] on a set of large examples. BOOM is
a recently developed heuristic minimizer that specializes in
large examples.

The remainder of the paper is organized as follows. Sec-
tion 2 introduces background material. Section 3 gives
an overview of the new SAT-based method. Sections 4
through 6 introduce our new SAT-based algorithms for the
ESPRESSO-II operators. Section 7 gives experimental re-
sults, and Section 8 gives conclusions.

2. Background

This section first reviews a number of definitions in logic
synthesis. Then, two-level logic minimization algorithms
are surveyed.

2.1. Basic Logic Synthesis Definitions

The following definitions are taken from Rudell [11],
and standard textbooks [5, 9] with small modifications [14].

Let � �� ��� �� be the set of binary values. �
� can

be modeled as a binary �-cube, and each element � �



���� � � � � ��� � �
� is called a minterm. Note that the well-

known binary Boolean algebra is given by the the set � to-
gether with the operations � (also called disjunction, sum,
OR) and � (conjunction, product, AND).

A Boolean function � of � variables, ��� � � � � ��, is a
mapping � � � � � ��� �� ��. Here, the symbol � denotes a
don’t care condition, i.e. the value of the function does not
matter. Note that a minterm ���� � � � � ��� indicates which
values are assigned to the variables of a function, i.e. �� �
��� �� � ��, and so on.

The ON-set of a Boolean function � is defined as the set
of minterms for which the function has value 1. Similarly,
the OFF-set and DON’T-CARE-set are defined as the sets
of minterms for which the function has value 0 and *, re-
spectively.

Boolean functions as defined above are often referred to
as single-output Boolean functions. A multi-output Boolean
function is a mapping � � �

� � ��� �� ���. Note that
each of the output functions ��� � � � � �� has its own ON-set,
OFF-set, and DON’T-CARE-set associated with it. For the
sake of simplicity of presentation, only single-output func-
tions are considered in the remainder of this section. The
presented algorithms in this paper can handle multi-output
functions.

Each variable �� has two literals associated with it:
an uncomplemented (or positive) literal ��, and a comple-
mented (or negative) literal �� or ���. The literal �� (��)
represents a Boolean function which evaluates to 1 (0) for
minterms with �� � �, and to 0 (1) for minterms with
�� � �.

A product term is a Boolean product (AND) of liter-
als. That is, a product evaluates to 1 for a minterm �, if
each literal included in the product evaluates to 1 for the
minterm �. Otherwise, the product evaluates to 0. In the
former case, the product is said to contain minterm �. Note
that each minterm corresponds to a product that only con-
tains the given minterm. More specifically, the minterm
� � ���� � � � � ��� corresponds to the product ���� � � ����� ,
where ���� denotes the positive (negative) literal of �� if
�� � ����. For example, the minterm � � ��� �� �� cor-
responds to the product ������, which is often used as a
convenient abbreviation. Since a product corresponds to a
set of adjacent minterms in the binary �-cube, a product is
also referred to as a cube.

A cube � is contained in a cube � (� � �) if each
minterm contained in � is also contained in �. The intersec-
tion of cubes � and � (� � �) is the uniquely defined cube
which contains those minterms contained in both cubes.
The supercube of cubes � and �, denoted supercube(�� �),
is the uniquely defined smallest cube that contains both
cubes. For example, if � � ����, and � � ������, then
supercube(�� �) = ��. In general, to compute the supercube
each literal must be considered. A literal is included in the
supercube of two cubes if and only if it is included in both
cubes. The supercube of a set of cubes is defined similarly.

A sum-of-products is a Boolean sum (OR) of prod-
ucts. That is, a sum-of-products evaluates to 1 for a given
minterm if some product contains the minterm.

An implicant of a Boolean function is a cube which con-
tains no minterm in the OFF-set. A prime implicant is an
implicant contained in no other implicant of the function.
An essential prime implicant is a prime implicant contain-
ing at least one ON-set minterm which is not contained in
any other prime implicant.

A cover of a Boolean function is a set of implicants in-
terpreted as a sum-of-products, which evaluates to 1 for all
the minterms of the ON-set, and none of the OFF-set. We
use the term prime cover to refer to a cover containing only
prime implicants.

The complement of a Boolean function � is denoted by
� , or � �, and evaluates to 1 (0) if � evaluates to 0 (1).

2.2. Two-Level Logic Minimization

The two-level logic minimization problem is to find a
cover for � that minimizes a given cost function. In digital
design, such a cover can be implemented as a minimum-
cost sum-of-products (two-level) circuit. Here, the cost, or
size, of a cover is often defined as the number of cubes in
the cover. (Another popular cost function is the number of
literals.)

The classic QUINE-MCCLUSKEY algorithm [7, 11] to
solve the exact two-level minimization problem is based on
the insight that the implicants in a minimum-cost cover can
be restricted to prime implicants. The algorithm consists of
two steps: ��� generate the set of all prime implicants; and
���� select a minimum number of prime implicants such that
each ON-set minterm is contained.

SCHERZO [4] is currently the state-of-the-art exact two-
level logic minimization algorithm. Using implicit mini-
mization techniques, i.e. using data structures (BDDs and
ZBDDs) that facilitate the manipulation of a large number
of objects simultaneously, SCHERZO is 10 to more than 100
times faster than the best previous minimization methods.

Since solving the exact two-level logic minimiza-
tion problem involves computationally intractable prob-
lems, heuristic approaches have been developed as well.
ESPRESSO-II [12, 1] is the state-of-the-art tool for heuristic
two-level logic minimization. The output of ESPRESSO-II
is a cover, which in practice is almost always near-minimum
in cardinality. The tool is very efficient and is used world-
wide. Recently, an alternative tool, called BOOM [6], that
particularly addresses large problems has been introduced.

3. Heuristic Minimization Using SAT Checkers

Solving the two-level logic minimization problem can
be computationally expensive. Hence, heuristic tools like
ESPRESSO-II have been developed as powerful practical
alternatives. While ESPRESSO-II almost always produces
near-minimum solutions in practice, it takes a long time to
solve large problems.



Our aim is to achieve high-quality approximations effi-
ciently for large problems. We combine the strengths of
ESPRESSO-II (quality of approximation) and SAT solvers
(speed on large problems) by adopting the same basic strate-
gies as ESPRESSO-II but by performing them efficiently us-
ing SAT-based algorithms.

ESPRESSO-II’s strategies are implemented by various
procedures called ‘operators’. The major ESPRESSO-II op-
erators are called EXPAND, IRREDUNDANT, REDUCE
and ESSENTIALS (these are described in more detail in
the following sub-section). ESPRESSO-II’s run-time pro-
file was analyzed for some large examples, taken from a
recently-published benchmark suite [6]. Our analysis indi-
cated that the major bottlenecks were REDUCE, ESSEN-
TIALS and IRREDUNDANT (in that order). For the con-
sidered examples, the EXPAND operator was not a bottle-
neck and executed quickly even on large examples with 200
variables. Accordingly, our efforts were focused on devel-
oping SAT-based algorithms for the other three operators.

In the remainder of this section, we begin by giving back-
ground on ESPRESSO-II, since its basic minimization strat-
egy is similar to the one that we use. We then develop SAT-
based algorithms to implement the IRREDUNDANT, RE-
DUCE and ESSENTIALS operators.

3.1. Background on ESPRESSO-II

ESPRESSO-II, developed in the early 1980s, is a very
powerful tool for heuristic two-level logic minimization.
The tool has been very successful, and the underlying ideas
have also inspired tools for other domains, e.g. for a vari-
ety of problems in logic design [9] and asynchronous logic
synthesis [15].

The input to ESPRESSO-II is the Boolean function to be
minimized, specified in terms of its ON-set, OFF-set, and
DON’T-CARE-set. Two of these sets are actually sufficient
as the three sets partition �

� . Each of the sets is specified
in terms of an arbitrary set of implicants (e.g. all contained
minterms, or possibly larger cubes), denoted 	 �� , 	��� ,
and 	�� , respectively. The set of implicants 	 �� repre-
sents an initial unoptimized cover, or solution. The output
of ESPRESSO-II is a cover, which is in practice almost al-
ways near-minimum in cardinality.

ESPRESSO-II iteratively refines the cover by applying
three operators in its main loop. This iteration continues
until no further improvement is possible: (i) EXPAND en-
larges each implicant of the current cover, in turn, into a
prime implicant. (ii) IRREDUNDANT makes the current
cover irredundant by deleting a maximal number of redun-
dant implicants from the cover. (iii) REDUCE sets up a
cover that is likely to be made smaller by the following EX-
PAND step. To achieve this goal, each cube in the current
cover is maximally reduced, in turn, to a smaller cube such
that the resulting set of cubes is still a cover.

ESPRESSO-II also employs additional operators, such as
ESSENTIALS and LAST GASP, which can be quite pow-

erful. ESSENTIALS is used to identify all essential prime
implicants before the main loop is entered, in order to sim-
plify the covering problem. LAST GASP is applied after
the main loop is exited, to try to escape a suboptimal local
minimum; if successful the main loop is entered again.

One key reason for the efficiency of ESPRESSO-II is
the so-called unate recursive paradigm, i.e., to decompose
operations recursively leading to efficiently solvable sub-
operations on unate functions (i.e. functions that are unate
in all of their variables). A function is unate in a variable if
changing the value of that variable from 0 to 1 either never
changes the function’s value from 0 to 1 or never changes
the function’s value from 1 to 0. A function would not be
unate in a variable if changing the value of that variable
from 0 to 1 sometimes changed the function’s value from 0
to 1 and sometimes changed it from 1 to 0 depending on the
values of the remaining variables.

4. Reduce

This section presents new SAT-based implementations
of the REDUCE operator. In particular, we describe three
methods in order of increasing performance advantage over
the operator implementation in ESPRESSO-II. Our best
implementation outperforms ESPRESSO-II’s REDUCE by
more than a factor of 100 on many of our large examples.

The purpose of the REDUCE operator is to modify the
current cover so that its cardinality may be improved by
the following EXPAND. Each implicant in a given cover
is maximally reduced in size, i.e. reduced to the smallest
cube such that the resulting set of implicants is still a cover.
The end result of REDUCE depends on the order in which
implicants are processed. Various heuristics have been de-
veloped to sort a cover before reducing its implicants. In
ESPRESSO-II, implicants are weighted and then sorted in
descending order of weight so as to first process those that
are large and overlap many other implicants. Our imple-
mentation reuses the heuristics adopted by ESPRESSO-II.

4.1. Method 1:

Let us now consider how to compute a maximally re-
duced cube. We are given a (sorted) cover 	 and an impli-
cant � � 	 . Reducing� to the cube �� results in a new set of
cubes
 � �	�����	����. The goal is to find the smallest
cube �� that makes 
 a cover. Any �� that makes 
 a cover
must contain all of the ON-set minterms of � that are not
contained in any other implicant of 	 . The smallest �� that
contains all of these minterms is simply their ��
������ (by
definition).

Equivalently, we are looking for the supercube of all sat-
isfying assignments of the following formula:

� �
�
	��
	 ��


� �

�
� �
�����

�

�
� (1)



MAXIMALLY-REDUCE-SIMPLE (�, 	 , 	 �� )
1 �

2 �
 TOCNF
��

����� �
	

3 �
 � �


�
	��
	 ��


�

�
��

4 � 
 �
5 while (SAT CHECK (�, &����������) = SATISFIABLE)
6 �
7 � 
 � 	 ����������
8 �
 � � ����������
9 �
10 return SUPERCUBE(�);
11 �

Figure 1. Maximally-Reduce-Simple

In Formula (1), � is the cube to be reduced, 	 denotes
the current cover, and 	 �� denotes the given ON-set. The
formula characterizes minterms that must be included in the
reduced cube. Each such minterm (i) must be covered by �,
(ii) must not be covered by any other cube � of the current
cover 	 , and (iii) must be in the ON-set of the function.

Formula (1) will be fed to a SAT checker. To do so, the

part of the formula
��

����� �
	

must be converted into

CNF (conjunctive normal form).
To perform this conversion, we first introduce a new vari-

able �� for each product � in the sum-of-products. Then,
for each �, we express (�� � �) in clause form. Fi-
nally, all the clauses so obtained are ANDed together with��

����� ��

	
.

For example, if � � �� � ��, then we introduce the
variables ��
 and �
� and form ���� as follows:

���� � ���
 � �
�� � ���
 � ��� � ��
� � ���

� ���
 � �
�� � ���
 � �� �����
 � �����
 � ��

���
� � �� ����
� � ����
� � ��

���� is not equivalent to �, but is satisfiable if and only
if � is satisfiable.

As an optimization, from the summation part of For-
mula (1), we can exclude those � that are disjoint from �.
Disjointness of implicants can be computed efficiently us-
ing bitwise operators.

Finally, it remains to be ensured that �� does not intersect
the OFF-set. This follows from the fact that the smallest
cube that contains a set of minterms (i.e. their supercube)
is a subset of any other cube that contains those minterms.
Thus, �� is guaranteed to be a subset of �, which itself does
not intersect the OFF-set.

ESPRESSO-II computes maximally reduced cubes by
using the aforementioned unate recursive paradigm (Sec-
tion 3.1).

MAXIMALLY-REDUCE-FAST (�, 	 , 	 �� )
1 �

2 �
 TOCNF
��

����� �
	

3 �
 � �


�
	��
	 ��


�

�
��

4 ��
 �
5 while (SAT CHECK (�, &����������) = SATISFIABLE)
6 �
7 ��
 SUPERCUBE���� �����������
8 �
 � � �� �

9 �
10 return ��;
11 �

Figure 2. Maximally-Reduce-Fast

In contrast, our method is based on SAT-solving. For-
mula (1) suggests one simple approach — find all the sat-
isfying assignments of (1) using a SAT checker, and then
compute their supercube

This approach, called MAXIMALLY-REDUCE-SIMPLE,
is shown in Figure 1. The function SAT CHECK() takes a
CNF formula as its first parameter and determines whether
it is SATISFIABLE. If so, a satisfying assignment is returned
by modifying the second parameter (passed-by-pointer).
The function SUPERCUBE computes and returns the super-
cube of its argument cubes.

In each iteration of the while loop, it is determined if � is
satisfiable. If it is, then a satisfying assignment is returned
via ����������, � is modified to ‘block’ out ����������
(line 8), and ���������� is added to the collection � of
assignments found so far (line 7). Continuing in this way,
eventually all satisfying assignments are found, and their
supercube is computed and returned in line 10.

4.2. Method 2:

A modified version can be found that is often much faster
than Method 1. The modified algorithm MAXIMALLY-
REDUCE-FAST (Figure 2) maintains a ‘running total’ su-
percube �� of all the assignments found so far, rather than
the set of satisfying assignments that has been discovered.
Each time a satisfying assignment is found in the while loop
of lines 5–9, Method 2 updates the supercube � and then
blocks out the updated supercube �� from �. This is in con-
trast to Method 1, which updates the collection S and blocks
out each individual assignment (lines 7 and 8). In the end
the algorithm simply returns the running total so far.

Intuitively, the modified algorithm limits the number of
satisfying assignments that need to be found. In each iter-
ation an assignment is found that differs from the running
total in at least one literal. Therefore, each iteration extends
the running total in at least one more dimension. Hence, if
the reduced cube has � dimensions, the maximum number



of satisfying assignments that need to be found is �. (Obvi-
ously, it can be as few as two assignments in the best case,
if the two ’opposite corners’ of the final reduced cube are
the first two assignments that are found. In fact, ordering
heuristics can be geared toward such cases.)

4.3. Method 3:

It is possible to further speed up the algorithm just dis-
cussed. The improved algorithm MAXIMALLY-REDUCE-
FASTER, shown in Figure 3, is the one that was actually im-
plemented. Unlike the algorithm in Figure 2, the improved
algorithm does not make multiple calls to SAT CHECK,
obtaining satisfying assignments one at a time. Instead,
it makes a single call to a modified SAT checker NEW-
SAT CHECK, which computes all the solutions of � and
returns their ‘running total’ supercube.

Before explaining NEW-SAT CHECK, we first briefly
review how state-of-the-art SAT checkers work. To deter-
mine the satisfiability of a given propositional Boolean for-
mula on � variables (� in our case), SAT checkers perform
a sophisticated backtracking search of the Boolean space
�
� . During the search process, the SAT engine maintains

a partial assignment, which is constructed a few variables
at a time in the hope of finding a satisfying assignment (or
a proof of unsatisfiability). While constructing the assign-
ment, conflicts may be discovered, i.e. situations where the
entire subcube represented by a partial assignment has been
unsuccessfully searched without finding a satisfying assign-
ment. In that case, the search backtracks. Modern SAT
checkers implement a learning mechanism for conflicts - a
clause is added to the original formula so that the same un-
successful situation is not repeated.

Our modified SAT checker mainly differs in its behav-
ior when finding a satisfying assignment. Unlike the orig-
inal SAT CHECK, NEW-SAT CHECK does not immedi-
ately terminate when a satisfying instance is found. Instead,
it treats this situation as a conflict - re-using zChaff’s (the
employed SAT engine) own internal functions. The result-
ing state of the search is as though we had started out with
the found assignment blocked out. In particular, first, the
formula being tested is adjusted and then the backtracking
search is resumed, either continuing at the appropriate depth
������ in the search tree, or stopping if ������ turns out to
be the root level of the search tree indicating that the search
space has been exhausted. Note that the search tree is not
maintained explicitly but is traversed implicitly.

One major advantage of using NEW-SAT CHECK is that
it allows us to avoid repeatedly restarting the backtracking
search from scratch. This not only leads to a more effi-
cient algorithm but also translates into an implementation
efficiency — we no longer need to repeatedly set up and
tear down the state needed by SAT CHECK. Thus, a lot of
redundant work is eliminated.

Note that the new algorithm makes the same adjustments
to the formula � and supercube �� as does the previous al-

MAXIMALLY-REDUCE-FASTER (�, 	 , 	 �� )
�

�
 TOCNF
��

����� �
	

�
 � �


�
	��
	 ��


�

�
� �

��
 �
NEW-SAT CHECK (�, &��)
/* NEW-SAT CHECK always returns UNSATISFIABLE */
return ��;

�

Inside the SAT engine, whenever a satisfying assignment �
is found:
... ��
 SUPERCUBE���� ��
�
 � � �� �

������ � DETERMINE-BACKTRACK-LEVEL��
BACKTRACK(������);
if (CURRENT-LEVEL () �� ROOT LEVEL)
�

/* search space is exhausted; return from SAT engine */
return UNSATISFIABLE

�
...

Figure 3. Maximally-Reduce-Faster

gorithm (Method 2). The major difference is that in the new
algorithm, the adjustments are made by the SAT checker,
whereas in the previous algorithm they were made by the
calling function.

5. Irredundant

The IRREDUNDANT operator takes a cover produced
by EXPAND and tries to reduce its cardinality to a local
minimum. ESPRESSO-II’s IRREDUNDANT operator sets
up and solves an optimization problem to find a largest sub-
set of implicants that can be removed from the given cover
without making it invalid.

Currently, our implementation uses a simple-minded al-
gorithm where we test each implicant � in a cover 	 for
relative essentiality, i.e. if it contains an ON-set minterm of
� that is not contained in any other implicant of 	 . Each
implicant that is not relatively essential is immediately re-
moved from 	 . This algorithm does produce an irredundant
cover, but the resulting quality may be suboptimal. In prac-
tice, we observed that this suboptimality is almost always
negligible, and does not negatively influence the outcome
of the logic minimization algorithm.

In our algorithm, SAT is employed in the test for relative
essentiality. For � � 	 to be relatively essential, there must



exist a witness ON-set minterm that is contained in � but
not in any other implicant of 	 . Hence, Formula (1), pre-
sented in the previous section, can be used to test if a cube is
relatively essential. The formula is satisfiable for a cube �
if and only if � is relatively essential. Note that in contrast
to the previous section, it is not necessary to seek more than
one satisfying assignment of the formula.

6. Essentials

The ESSENTIALS operator is intended to simplify the
minimization problem. Essential prime implicants must be
present in any prime cover of the given function. There-
fore, they should be identified at the outset so that the sub-
sequent main loop of ESPRESSO-II only has to deal with
non-essential primes.

A prime implicant � of a function � is essential if there
exists at least one witness ON-set minterm that is contained
in � but not in any other prime implicant of � . Conse-
quently, to compute the essentials of a function, it is suffi-
cient to compute their witnesses. To get the actual essentials
given the witnesses, we can use the EXPAND operator on
each witness.

6.1. Characterization of Witnesses

We now derive some facts, which will help to identify
witnesses (� denotes a given Boolean function). Let � �
���� � � � �� be a minterm, then there are � minterms adjacent
to it, each of which is obtained by negating one literal in �:

���� � � � ��� ���� � � � ��� � � � ���� � � � ��

Let ������ denote the set of minterms adjacent to �. Then,
we define:

����� ��� 
 ������ � ON-set���

(i.e. ON-set minterms adjacent to �)

�������� 
 ������ � DC-set���

(i.e. DC-set minterms adjacent to �)

������ ��� 
 ������ � OFF-set���

(i.e. OFF-set minterms adjacent to �)

It holds that ����� ���� �������� and ������ ���
are pairwise disjoint; and ����� ��� 	 �������� 	
������ ��� � ������.

Given a cube �, we also define ����
���� to be the set
of all minterms contained in � that are adjacent to �. In this
section, we denote the (uniquely defined) supercube of a set
� of minterms by ��
���������.

Fact 6.1 If � is a Boolean �-cube, and � is a minterm in �,
then it holds � � ��
���������� 	 ����
�����

Since � has � dimensions, there are � minterms in � that are
adjacent to � (i.e. �����
����� � �). Since the supercube
under consideration must contain � and all of these � adja-
cent minterms, it itself must have dimensionality of at least
�. In fact, since � has � dimensions, the supercube must
also have exactly � dimensions (by definition). Further, for
the supercube to be uniquely defined, we must have that �
is the supercube.

Fact 6.2 Given an ON-set minterm � and a prime implicant
� containing it, � is a witness of essentiality (with � its es-
sential prime) if and only if all minterms in ����� ��� 	
�������� are contained in �.

(‘only if’): Assume there is an �� � ����� ��� 	
�������� that is not contained in �. Then since � and
�� are adjacent, they form a binary cube. Further, neither
minterm is in the OFF-set. Hence, the set ��� ��� represents
an implicant, which we will denote as � for brevity. Let � �

be a prime implicant containing �. Then � � contains both �
and ��. But this means �� is a prime implicant that contains
� but is distinct from � (� does not contain � � by assump-
tion). Hence, � is not a witness and � is not an essential.

(‘if’): Assume all minterms in ����� ��� 	 ��������
are contained in �. Then we must have that ����� ��� 	
�������� � ����
����. Now let � be an arbitrary
prime implicant containing �. Since � cannot intersect
the OFF-set, every minterm in � must be either an ON-
set minterm or a DC-set minterm. This implies that
����	���� � ����� ���	��������. Hence we must have
that ����	���� � ����
����. This in turn means that

� � ��
���������� 	 ����	����� (Fact 6.1)

� ��
���������� 	 ����
�����

� �

Thus, � � �. But since � is also a prime implicant
and hence cannot be contained in any other implicant, this
means that � � �. Therefore, there is exactly one prime im-
plicant that contains �. Thus, � is a witness to essentiality
and � is an essential prime, which completes the proof.

Fact 6.3 An ON-set minterm � is a witness of essentiality if
and only if ��
����������	����� ���	��������� does
not intersect the OFF-set.

If ��
���������� 	 ����� ��� 	 ��������� does not in-
tersect the OFF-set, then it is an implicant which contains
all minterms in ����� ��� 	 ��������. The cube is a
prime implicant as expanding it in any additional direc-
tion would include one minterm from ������ ��� and thus
overlap the OFF-set. Hence, � is a witness of essentiality
(Fact 6.2). If ��
����������	��������	��������� in-
tersects the OFF-set, no implicant can be found to contain
all minterms in ����� ��� 	 ��������. Hence, � is not a
witness (Fact 6.2).



6.2. SAT-Formula for Witnesses

Fact 6.3 suggests a procedure, given below, for decid-
ing whether a minterm � is a witness. First, we adopt the
following notation:

� Let �� � �
� � � denote the Boolean function that

evaluates to 1 for all ON-set minterms and 0 otherwise.
We express �� by the formula

�
����� �.

� Let ��� � �
� � � denote the Boolean function that

evaluates to 0 for all OFF-set minterms and 1 other-
wise. We express ��� by the formula

�
	����� �.

Procedure for deciding whether a given minterm � �
���� ��� � � � � ��� is a witness:

1. Ensure that � ���� � �. If not, � is not a witness.

2. For each � in � � � � �:
Let �� � ���� ��� � � � � ����� ��� ����� � � � � ���.
Let 
� � � if ������� � �; otherwise let 
� � �.

3. Compute supercube of � with all �� for which 
� � �,
i.e. ������� � �.

4. If this supercube does not intersect the OFF-set, then �
is a witness. Otherwise, � is not a witness.

We can ‘program’ the above procedure into a
single Boolean formula over the 	� variables
��� ��� � � � � ��� 
�� 
�� � � � � 
�. Here, the 
-variables
are implied variables, and the formula is satisfiable for a
minterm � � ���� ��� � � � � ��� if and only if � is a witness
to an essential prime implicant:

������ ��� � � � � ��� (2)

�
��

���




� � ������� ��� � � � � ����� ��� ����� � � � � ���

�
(3)

� ���� ���� ��� � � � � ��� 
�� 
�� � � � � 
�� (4)

Subformula (2) ‘performs’ Step 1 of the procedure out-
lined above; subformula (3) performs Step 2; and subfor-
mula (4) combines Steps 3 and 4. The formula for � ���
is constructed by taking the formula for � ��, and then re-
placing each occurrence of the literal � � with 
��� and each
occurrence of the literal �� with 
���. Intuitively, the super-
cube must not intersect the OFF-set. That is, for each cube
� � 	��� , the supercube must contain one literal whose
negated literal is contained in �. The latter can be reformu-
lated for a witness. The witness must contain one literal (i)
whose negated literal is contained in � and (ii) which does
not correspond to a literal that is removed by the supercube
operation, i.e. for which 
� is 0. ��� negates each OFF-set
cube � obtaining a CNF clause which guarantees (i), and (ii)
is established by using the 
-variables to mask out literals
which are not included in the supercube.

Name ESPRESSO-II BOOM SAT-ESPRESSO

50/100 17.79 8.48 3.04
50/150 48.40 31.57 6.69
50/200 138.55 109.03 23.13
100/50 9.23 0.63 3.11
100/200 1198.20 165.83 64.16
150/100 175.43 13.66 16.59
150/200 1320.30 1212.21 260.36
200/50 18.44 10.63 3.12
200/100 204.49 30.40 22.15
200/150 1265.68 186.52 56.05
200/200 2178.11 2626.39 134.19

Table 1. Run-time comparison (in sec)

The entire formula can be converted to CNF using the
technique described in Section 4.2.

As an optimization, one can compute an over-
approximation � to the set of essential primes, and
then constrain the above formula to represent only those
minterms that are contained in �. The over-approximation
� can be computed by taking any two covers of the given
function and computing their intersection. The two covers
are obtained by using EXPAND with different heuristics for
expanding cubes. In practice, this optimization was very
useful because in all of the examples we tested, our over-
approximation � turned out to be the empty set, indicat-
ing that no essentials are present, constraining the formula
to FALSE, and thus allowing us to skip the SAT checking
phase entirely.

7. Experimental Results

Table 1 compares the overall run-times of SAT-
ESPRESSO with ESPRESSO-II and BOOM on a recently
published benchmark suite [6]. BOOM is a recently devel-
oped heuristic minimizer that specializes in large examples.
SAT-ESPRESSO was found to be typically 5–20 times faster
than ESPRESSO-II and 3–5 times faster than BOOM.

Table 2 compares per-operator run-times of SAT-
ESPRESSO with ESPRESSO-II for the operators REDUCE,
ESSENTIALS and IRREDUNDANT. Here, we observed
speed-ups of one to two orders of magnitude (REDUCE:
16–400 times; ESSENTIALS: 37–270 times; IRREDUN-
DANT: 7–110 times).

Note that SAT-ESPRESSO uses the same overall strat-
egy as ESPRESSO-II, and thus obtains the same resulting
covers. Hence, the tables in this section primarily focus on
run-time.

ESPRESSO-II and SAT-ESPRESSO both iterate until no
further improvement of the cover can be achieved. In con-
trast, BOOM iterates until the cover satisfies a given cri-
teria, e.g. the number of literals is smaller than a given
bound. Hence, we ran BOOM after ESPRESSO-II and SAT-
ESPRESSO, using the obtained number of literals from these
runs as the bound to be achieved by BOOM for termination.

In SAT-ESPRESSO, we use as SAT checker a modified



ESSENTIALS IRREDUNDANT REDUCE
Name
(�/�) ESPRESSO-II SAT-ESPRESSO Factor ESPRESSO-II SAT-ESPRESSO Factor ESPRESSO-II SAT-ESPRESSO Factor

50/100 4.86 0.08 60.75 2.99 0.38 7.87 7.77 0.39 19.92
50/150 15.32 0.22 69.64 6.08 0.69 8.81 21.97 0.74 29.69
50/200 35.28 0.37 95.35 18.64 1.40 13.31 65.00 1.68 38.69
100/50 2.65 0.07 37.86 1.11 0.16 6.94 2.68 0.17 15.76
100/200 212.70 1.10 193.36 134.17 2.12 63.29 793.85 3.64 218.09
150/100 31.10 0.46 67.61 20.39 0.72 28.32 109.63 1.18 92.91
150/200 511.33 1.87 273.44 103.75 0.95 109.21 448.51 1.20 373.76
200/50 6.67 0.18 37.06 2.35 0.26 9.04 7.11 0.32 22.22
200/100 84.44 0.64 131.94 14.88 0.56 26.57 84.65 0.74 114.39
200/150 251.70 1.47 171.22 94.92 1.82 52.15 869.72 3.79 229.48
200/200 567.99 2.84 200.00 183.58 1.70 107.99 1301.07 3.27 397.88

Table 2. Time spent in operators ESSENTIALS, IRREDUNDANT and REDUCE. �/
-number of inputs/number
implicants in the initial cover. All functions have 5 outputs.

version of zChaff [10]. Our implementation involves a lot
of redundant file I/O, so there is room for improvement re-
garding the performance.

ESPRESSO-II and SAT-ESPRESSO were run on a Dell
OptiPlex GX300 workstation using a 733MHz Intel Pen-
tium III processor, 512MB system memory and the Linux
operating system. BOOM was run on a Dell OptiPlex GX1
500 MTbr+ workstation using a 500MHz Pentium III pro-
cessor, 512MB system memory and the Windows 2000 op-
erating system. This arrangement was due to the fact that
BOOM was only available for Windows whereas zChaff (the
SAT checker used) was not. To estimate the difference due
to workstation type, ESPRESSO-II was also run on both
platforms for seven of the examples with an observed av-
erage speed-up from Windows to Linux of ��
�� ����.

All considered examples were taken from a recently pub-
lished benchmark set of large examples [6]. However, it
turns out that this benchmark set shows some unexpected
unifying behavior: the examples do not have essential prime
implicants and the IRREDUNDANT operator never suc-
ceeds. For these reasons, further experimentation with other
sets of large benchmarks will be necessary to better evaluate
our new algorithms.

8. Conclusions
We have presented an approach to efficiently achieve

high-quality approximations on large two-level logic
minimization problems, by combining the strengths of
ESPRESSO-II (quality of approximation) and SAT checkers
(speed on large problems). Preliminary experiments show
significant reductions in run-time when compared to other
minimizers.

References
[1] R. Brayton, G. Hachtel, C. McMullen, and A. Sangiovanni-

Vincentelli. Logic Minimization Algorithms for VLSI Syn-
thesis. Kluwer Academic, 1984.

[2] E. Clarke, O. Grumberg, and D. Peled. Model Checking.
MIT Press, 1999.

[3] E. M. Clarke, P. Chauhan, S. Sapra, J. Kukula, H. Veith,
and D. Wang. Automated abstraction refinement for model
checking large state spaces using sat based conflict analysis.
In FMCAD, pages 33–51, 2002.

[4] O. Coudert. Two-level logic minimization: an overview. In-
tegration, the VLSI journal, 17:97–140, 1994.

[5] S. Devadas, A. Ghosh, and K. Keutzer. Logic Synthesis.
McGraw-Hill, 1994.

[6] J. Hlavicka and P. Fiser. BOOM - a heuristic boolean mini-
mizer. In Proc. International Conf. Computer-Aided Design
(ICCAD), pages 439–442, 2001.

[7] E. McCluskey. Logic Design Principles. Prentice-Hall,
1986.

[8] K. L. McMillan. Applying sat methods in unbounded sym-
bolic model checking. In Proc. Computer Aided Verification,
pages 250–264, 2002.

[9] G. D. Micheli. Synthesis And Optimization Of Digital Cir-
cuits. McGraw-Hill, 1994.

[10] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and
S. Malik. Chaff: Engineering an efficient sat solver. In Proc.
ACM/IEEE Design Automation Conference, pages 530–535,
2001.

[11] R. Rudell. Logic synthesis for VLSI design. Technical Re-
port UCB/ERL M89/49, Berkeley, 1989.

[12] R. Rudell and A. Sangiovanni-Vincentelli. Multiple valued
minimization for PLA optimization. IEEE Transactions on
CAD, CAD-6(5):727–750, September 1987.

[13] J. P. M. Silva and K. A. Sakallah. Grasp: A new search al-
gorithm for satisfiability. Technical Report CSE-TR-292-96,
Computer Science and Engineering Division, Department of
EECS, Univ. of Michigan, 1996.

[14] M. Theobald. Efficient Algorithms for the Design of Asyn-
chronous Control Circuits. PhD thesis, Department of Com-
puter Science, Columbia University, 2002.

[15] M. Theobald and S. M. Nowick. Fast heuristic and exact al-
gorithms for two-level hazard-free logic minimization. IEEE
Transactions on Computer-Aided Design, Nov. 1998.

[16] H. Zhang. Sato: An efficient propositional prover. In
Proceedings of the Conference on Automated Deduction
(CADE’97), pages 272–275, 1997.


